David Causeur L'Institut Agro IRMAR CNRS UMR 6625

https://dcauseur.netlify.app

- 1 Effet à l'échelle d'une population

Effet à l'échelle d'une population

Analyse de variance à un facteur

Test de Fisher

Modèle de régression linéaire

Ajustement d'un modèle de régression

Test de Fisher

- Décider à partir de données

Analyse de variance à un facteur Test de Fisher

Modèle de régression linéaire Ajustement d'un modèle de régression Test de Fisher

- 1 Effet à l'échelle d'une population
- 2 Décider à partir de données
- 3 Effet 'groupe'

Comparaison de groupes
Analyse de variance à un facteur
Estimation des paramètres d'effet
Test de Fisher
Le cas particulier de la comparaison de 2 groupes
Décrire un effet groupe
Test avec des données appariées

Linéarité d'un e

Modèle de régression linéaire Ajustement d'un modèle de régression Test de Fisher

- Effet à l'échelle d'une population
- 2 Décider à partir de données
- 3 Effet 'groupe'

Comparaison de groupes
Analyse de variance à un facteur
Estimation des paramètres d'effet
Test de Fisher
Le cas particulier de la comparaison de 2 groupes
Décrire un effet groupe

4 Effet linéaire

Linéarité d'un effet Modèle de régression linéaire Ajustement d'un modèle de régression Test de Fisher Comparaison de droites de régression

 $\hat{\beta}_0$ et $\hat{\beta}_1$ sont des combinaisons linéaires des Y_i :

$$\hat{\beta}_{1} = \frac{s_{xy}}{s_{x}^{2}} = \frac{1}{n-1} \sum_{i=1}^{n} \frac{x_{i} - \overline{x}}{s_{x}^{2}} (Y_{i} - \overline{Y}),$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} \frac{x_{i} - \overline{x}}{s_{x}^{2}} Y_{i}.$$

$$= \sum_{i=1}^{n} \omega_{i}(x) Y_{i}, \text{ avec } \omega_{i}(x) = \frac{1}{n-1} \frac{x_{i} - \overline{x}}{s_{x}^{2}}$$

 $\hat{\beta}_0$ et $\hat{\beta}_1$ sont des combinaisons linéaires des Y_i :

$$\hat{\beta}_1 = \sum_{i=1}^n \omega_i(x) Y_i.$$

Comme combinaison linéaire des Y_i , indépendants et suivant une loi normale, $\hat{\beta}_1$ suit lui-même une loi normale :

$$\mathbb{E}(\hat{\beta}_1 \mid X = x) = \beta_1 \qquad [\hat{\beta}_1 \text{ est non-biaisé.}]$$

$$\operatorname{Var}(\hat{\beta}_1 \mid X = x) = \frac{\sigma^2}{n-1} \frac{1}{s_x^2}.$$

Comme combinaison linéaire des Y_i , indépendants et suivant une loi normale, $\hat{\beta}_1$ suit lui-même une loi normale :

Sachant
$$X = x$$
, $\hat{\beta}_1 - \beta_1 \sim \mathcal{N}(0; \frac{\sigma}{\sqrt{n-1}} \frac{1}{s_x})$

La précision de l'estimation est favorisée par :

- un faible écart-type résiduel σ (bonne adéquation du modèle aux données),
- une grande taille d'échantillon n,
- une grande dispersion des valeurs de x.

Résumé : $\hat{\beta}_0$ et $\hat{\beta}_1$ suivent une loi normale de moyennes β_0 et β_1 respectivement et d'écarts-types $\sigma_{\hat{\beta}_0}$ et $\sigma_{\hat{\beta}_1}$ respectivement :

$$\sigma_{\hat{\beta}_0}^2 = \frac{\sigma^2}{n-1} \Big[\frac{n-1}{n} + \frac{1}{s_x^2} \Big], \ \sigma_{\hat{\beta}_1}^2 = \frac{\sigma^2}{n-1} \frac{1}{s_x^2}.$$

Par conséquent,

$$\mathsf{CI}_{1-\alpha}(\beta_j) = \left[\hat{\beta}_j - t_{1-\alpha/2}^{(n-2)} \hat{\sigma}_{\hat{\beta}_j}; \hat{\beta}_j + t_{1-\alpha/2}^{(n-2)} \hat{\sigma}_{\hat{\beta}_j}\right], \ j = 0 \ \mathsf{ou} \ j = 1$$

où $\hat{\sigma}_{\hat{\beta}_i}$ est obtenu à l'aide de l'estimateur $\hat{\sigma}^2$ de σ^2

► Intervalles de confiance des coefficients dans R

Bande de confiance pour la droite de régression

On appelle **bande de confiance** pour la droite de régression, de niveau de confiance $1 - \alpha$, et on note $CB_{1-\alpha}(\beta)$ la famille suivante d'intervalles de confiance :

$$CB_{1-\alpha}(\beta) = \{CI_{1-\alpha}(\beta_0 + \beta_1 x^*); \text{ pour tout } x^*\},$$

Estimation de $\beta_0 + \beta_1 x^*$:

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x^* = \sum_{i=1}^n h_i(x, x^*) Y_i,$$
= combinaison linaire des Y_i .

Intervalle de confiance de prédiction dans R

Bande de confiance pour la droite de régression

Comme combinaison linéaire des Y_i , \hat{Y} suit une loi normale :

$$\mathbb{E}(\hat{Y} \mid X = x) = \beta_0 + \beta_1 x^*.$$

$$\operatorname{Var}(\hat{Y} \mid X = x) = \frac{\sigma^2}{n} \left[1 + \frac{n}{n-1} \left(\frac{x^* - \overline{x}}{s_x} \right)^2 \right].$$

Par conséquent,
$$CI_{1-\alpha}(\beta_0 + \beta_1 x^*) =$$

$$\left[\hat{Y}-t_{1-\alpha/2}^{(n-2)}\frac{\hat{\sigma}}{\sqrt{n}}\sqrt{1+\frac{n}{n-1}\left(\frac{x^{\star}-\overline{x}}{s_{x}}\right)^{2}};\hat{Y}+t_{1-\alpha/2}^{(n-2)}\frac{\hat{\sigma}}{\sqrt{n}}\sqrt{1+\frac{n}{n-1}\left(\frac{x^{\star}-\overline{x}}{s_{x}}\right)^{2}}\right],$$

Bande de confiance pour la droite de régression

Soit Y^* la valeur non-observée de la variable réponse pour un individu tel que $X^* = x^*$:

$$\hat{Y}^* = \hat{\beta}_0 + \hat{\beta}_1 x^*$$
 est la valeur prédite de Y^*

avec

$$\mathbb{E}(Y^{*} - \hat{Y}^{*} \mid X = x, \ X^{*} = x^{*}) = 0.$$

$$Var(Y^{*} - \hat{Y}^{*} \mid X = x, \ X^{*} = x^{*}) = \sigma^{2} + \frac{\sigma^{2}}{n} \Big[1 + \frac{n}{n-1} \Big(\frac{x^{*} - \overline{x}}{s_{x}} \Big)^{2} \Big].$$

La prédiction la plus précise est donc obtenue pour $x^* = \overline{X}$.

Test d'un effet linéaire

Dans quelle mesure

$$\mathcal{M}: Y = \beta_0 + \beta_1 x + \varepsilon \text{ avec RSS} = \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

s'ajuste-t'il mieux aux données que

$$\mathcal{M}_0$$
: $Y = \beta_0 + \varepsilon$ avec RSS₀ = $\sum_{i=1}^n (Y_i - \overline{Y})^2$?

Équation d'analyse de la variance :

$$RSS_0 = \sum_{i=1}^n (\hat{Y}_i - \overline{Y})^2 + RSS.$$

Test d'un effet linéaire

Le coefficient R² compare RSS et RSS₀ :

$$R^2 = \frac{RSS_0 - RSS}{RSS_0}.$$

- $0 \le R^2 \le 1$;
- $R^2 = 0$: absence d'effet de x;
- $R^2 = 1$: effet 'total' de x.

Coefficient R² dans R

Test de Fisher

Test de l'effet linéaire de X sur Y :

 $\begin{cases} H_0: & \mathcal{M} \text{ ne s'ajuste pas mieux aux données que } \mathcal{M}_0 \\ H_1: & \mathcal{M} \text{ s'ajuste mieux aux données que } \mathcal{M}_0 \end{cases}$

Statistique de test :

$$F = \frac{RSS_0 - RSS}{RSS/(n-2)}.$$

Un degré de liberté pour RSS₀ – RSS = $\sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2$:

$$\hat{Y}_i - \overline{Y} = \hat{\beta}_1(x_i - \overline{x})$$
 proportionnel à $x_i - \overline{x}$.

Statistique de Fisher dans R

Test de Fisher

F = 88.369 doit-il considéré comme une valeur élevée?

La loi de F sous l'hypothèse nulle est la loi de Fisher $\mathcal{F}_{1,n-2}$

Analyse de la variance du modèle dans R

Test de Fisher

Table d'Analyse de la Variance :

- Df: degrés de liberté, respectivement 1 et n − 2;
- Sum Sq: sommes de carrés, respectivement RSS₀ – RSS et RSS;
- Mean Sq: moyennes des carrés, respectivement $(RSS_0 RSS)/1$ et RSS/(n-2);
- F value : Statistique de Fisher, le rapport des moyennes de carrés;
- Pr (>F): p-value, la probabilité qu'une statistique de Fisher soit plus grande que F value sous l'hypothèse nulle.

Effets linéaires par groupes

La relation entre *LMP* et *épaisseur de gras* est-elle la même pour tous les types génétiques ?

Deux variables explicatives pour une même problématique :

- l'épaisseur de gras, variable quantitative;
- et le type génétique, variable catégorielle.

Si l'effet d'une variable n'est pas le même selon la modalité d'une variable catégorielle, on parle d'effet d'interaction entre les deux variables explicatives.

Régression linéaire avec effet 'groupe'

Soit Y_{ij} la variable réponse pour le *j*ème individu, $j = 1, ..., n_i$, dans le *i*ème groupe, i = 1, ..., I et x_{ij} la valeur correspondante de la variable explicative.

Modèle de régression dans le 1er groupe ('référence') :

$$Y_{1j} = \mu + \beta x_{1j} + \varepsilon_{1j}, \ \varepsilon_{1j} \sim \mathcal{N}(0; \sigma)$$

Modèle de régression dans le *i*ème groupe, avec $i \neq 1$:

$$Y_{ij} = \mu + \alpha_i + (\beta + \gamma_i)x_{ij} + \varepsilon_{ij}, \ \varepsilon_{1j} \sim \mathcal{N}(0; \sigma)$$

où:

- $\alpha_2, \ldots, \alpha_I$ sont les paramètres de l'effet 'groupe';
- $\gamma_2, \ldots, \gamma_l$ sont les paramètres d'interaction.

Régression linéaire avec effet 'groupe'

Deux sous-modèles :

 le modèle d'analyse de la variance à un facteur pour l'effet 'groupe', obtenu avec $\beta = 0$ et $\gamma_2 = \ldots = \gamma_I = 0$.

• le **modèle de régression linéaire simple** pour l'effet de X sur Y, obtenu avec $\alpha_2 = \ldots = \alpha_1 = 0$ et $\gamma_2 = \ldots = \gamma_1 = 0$.

Ajustement du modèle dans R

Régression linéaire avec effet 'groupe'

Correspondance entre les résultats de lm et les paramètres :

Paramètre	Nom dans R	Valeur estimée
$\overline{\mu}$	(Intercept)	80.2215328
β	BFAT	-1.4575042
α_2	GENETP25	-9.7600733
$lpha_{3}$	GENETP50	-13.7187769
γ_2	BFAT:GENETP25	0.6268832
γ 3	BFAT:GENETP50	0.9550714

L'effet de l'épaisseur de gras sur LMP semble

- le plus évident pour le type génétique P0,
- moins clair pour le type génétique P25
- et encore moins clair pour le type génétique P50.

Test d'un effet 'groupe' en régression linéaire

Dans quelle mesure

$$\mathcal{M}: Y_{ij} = \mu + \alpha_i + (\beta + \gamma_i)X_{ij} + \varepsilon_{ij}$$

s'ajuste-t'il mieux aux données que

$$\mathcal{M}_0$$
: $Y_{ii} = \mu + \alpha_i + \beta x_{ii} + \varepsilon_{ii}$?

Test de l'effet d'interaction dans R

Test d'un effet 'groupe' en régression linéaire

Table d'analyse de la variance :

- Res.Df: degrés de liberté de RSS;
- RSS: somme des carrés des écarts résiduels;
- Df: degrés de liberté de RSS₀ RSS;
- Sum of Sq: gain d'ajustement RSS₀ RSS de Model 2 par rapport à Model 1;
- F: statistique de Fisher pour la comparaison de Model 1 et Model 2;
- Pr (>F): p-value du test.