Démarche statistique

Session 8 - Planification d'expériences

David Causeur Institut Agro Rennes Angers IRMAR UMR 6625 CNRS

19 janvier, 2025

1

Pourquoi planifier le recueil de données ?

Plan d'expériences

Objectif général : Organiser le recueil de données, pour estimer au mieux les paramètres d'un modèle (linéaire).

- Plus le nombre n d'individus dans l'échantillon est grand, meilleure est la précision de l'estimation.
- A nombre d'individus fixé, la précision de l'estimation dépend du choix de ces individus selon leurs valeurs des variables explicatives.

Fisher, R. A. (1935) The Design of Experiments. (9th ed.): principes fondamentaux de la planification expérimentale illustrés par le défi du *thé au lait* (The Lady tasting tea).

Illustration : On cherche à estimer un modèle de régression expliquant la teneur en viande maigre d'une carcasse de porc à partir d'épaisseurs de gras mesurés en différents sites anatomiques. Le budget expérimental permet un échantillon de n=100 carcasses.

Comment choisir ces 100 individus à partir desquels on va estimer le modèle ?

- ► Au hasard uniforme dans la population ?
- ▶ En privilégiant des individus avec des épaisseurs de gras proches de la moyenne ?
- ▶ En partageant l'échantillon en 2 : 50 individus avec de faibles épaisseurs de gras et 50 individus avec de fortes épaisseurs de gras ?

Précision de l'estimation des effets

Illustration : échantillonnage (choix des individus) en régression linéaire simple

Pour
$$i = 1, ..., n$$
, $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, $\varepsilon_i \sim \mathcal{N}(0; \sigma)$

Estimation par la méthode des moindres carrés : $\hat{\beta}_1 = \frac{s_{xy}}{s_x^2}$

Précision de l'estimation :

$$\operatorname{Var}(\hat{\beta}_1) = \frac{\sigma^2}{n} \frac{1}{s_x^2}$$

La précision de l'estimation d'un effet est d'autant meilleure que :

- $ightharpoonup \sigma$ est proche de 0 : le modèle approche bien la relation entre Y et x
- ▶ n est grand : l'échantillon est de grande taille
- $ightharpoonup s_x^2$ est grand : les valeurs de x sont dispersées

En pratique, on choisit la moitié de l'échantillon parmi les individus ayant une valeur faible de x, l'autre moitié parmi les individus ayant une valeur élevée de x

л

Confusions d'effets

Illustration : On cherche à optimiser l'appréciation sensorielle (Y) d'un biscuit, dont la recette dépend de :

- la quantité de lait dans la pâte $(x_1 \in \{B, H\})$
- ▶ la température de cuisson $(x_2 \in \{B, H\})$
- ▶ la quantité de sucre $(x_3 \in \{B, H\})$

Plan d'expériences (liste d'essais) complet 2³

<i>x</i> ₁	<i>X</i> 2	<i>X</i> 3
Н	Н	Н
Н	Н	В
Н	В	Н
Н	В	В
В	Н	Н
В	Н	В
В	В	Н
В	В	В
	H H H B B	H H H H B B H B B B B

Comment répartir au mieux ces essais entre deux équipes ?

-

Estimation d'une différence de moyennes : analyse de la variance à un facteur

Illustration : modèle d'analyse de la variance à un facteur (à 2 modalités)

Pour
$$i = 1, 2, j = 1, ..., n_i, Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \varepsilon_{ij} \sim \mathcal{N}(0; \sigma)$$

Estimation d'une différence de moyennes (entre les groupes 1 et 2) :

$$\hat{\alpha}_2 = \bar{Y}_2 - \bar{Y}_1$$
, $Var(\hat{\alpha}_2) = \sigma^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)$.

Impact de la répartition des individus dans les deux groupes :

- $n = n_1 + n_2$
- ▶ Soit $f = \frac{n_1}{n}$, alors $0 \le f \le 1$ et $n_1 = fn$, $n_2 = (1 f)n$.

$$\begin{aligned} \mathsf{Var}\big(\hat{\alpha}_2\big) &=& \frac{\sigma^2}{n}\bigg(\frac{1}{f} + \frac{1}{1-f}\bigg), \\ &=& \frac{\sigma^2}{n}\bigg(\frac{1}{f(1-f)}\bigg), \text{ minimal pour } f = \frac{1}{2} \\ &\geq& \frac{4\sigma^2}{n} \end{aligned}$$

Effet d'une variable catégorielle : le dispositif optimal est équilibré $(n_1 = n_2)$

_

Confusion entre deux facteurs (à deux modalités)

Analyse de la variance à deux facteurs, x_1 et x_2 , chacun à deux modalités (B et H)

Pour
$$i = 1, 2, j = 1, 2, k = 1, \dots, n_{ij}, Y_{ijk} = \mu + \alpha_i + \beta_j + \varepsilon_{ijk}, \varepsilon_{ijk} \sim \mathcal{N}(0; \sigma)$$

Dispositif expérimental :

- ▶ Pour chaque facteur, n/2 individus avec la modalité H
- f, proportion des individus ayant la modalité H pour x₁ parmi ceux ayant la modalité H pour x₂

	Х		
	В	Н	Total
В	$\frac{n}{2}$ f	$\frac{n}{2}(1-f)$	<u>n</u>
Н	$\frac{n}{2}(\bar{1}-f)$	$\frac{n}{2}f$	$\frac{\overline{n}}{2}$
Total	$\frac{n}{2}$	<u>n</u> 2	n

Précision de l'estimation par la méthode des moindres carrés :

$$\operatorname{\mathsf{Var}}ig(\hat{lpha}_2ig) = \operatorname{\mathsf{Var}}ig(\hat{eta}_2ig) = rac{4\sigma^2}{n} rac{1}{1-(1-2f)^2},$$

- Précision optimale si $f = \frac{1}{2}$ (plan complet et équilibré)
- Précision dégradée si $f \approx \bar{0}$ ou $f \approx 1$ (confusion entre x_1 et x_2)

Plan complet pour facteurs à deux modalités

Plan complet pour p facteurs à deux modalités: 2^p combinaisons possibles des modalités des p facteurs

Illustration : matrice des essais (en ordre aléatoire) pour 3 facteurs

Remarques:

- la non-confusion complète entre deux facteurs F_i et F_j se traduit par F_i.F_j=0, où F_i.F_j est le produit scalaire des vecteurs colonnes, soit la somme des produits des coordonnées.
- on cherche en pratique à construire des plans qui garantissent au moins la non-confusion entre les effets principaux des facteurs

Codages binaires des modalités

Illustration: analyse de la variance à deux facteurs à deux modalités

- Contraintes sur les paramètres par défaut dans la fonction lm :
 - $\alpha_1 = 0, \ \beta_1 = 0,$
 - $(\alpha\beta)_{11} = 0$, $(\alpha\beta)_{12} = 0$ et $(\alpha\beta)_{21} = 0$

$$\begin{array}{lll} Y_{11} &=& 1\times\mu+0\times\alpha_2+0\times\beta_2+0\times(\alpha\beta)_{22}+\varepsilon_{11} \\ Y_{12} &=& 1\times\mu+0\times\alpha_2+1\times\beta_2+0\times(\alpha\beta)_{22}+\varepsilon_{12} \\ Y_{21} &=& 1\times\mu+1\times\alpha_2+0\times\beta_2+0\times(\alpha\beta)_{22}+\varepsilon_{21} \\ Y_{22} &=& 1\times\mu+1\times\alpha_2+1\times\beta_2+1\times(\alpha\beta)_{22}+\varepsilon_{22} \end{array}$$

- ► Contraintes sur les paramètres dans la fonction LinearModel de FactoMineR :
 - $\alpha_1 + \alpha_2 = 0, \ \beta_1 + \beta_2 = 0,$
 - $(\alpha\beta)_{11} + (\alpha\beta)_{12} = 0, (\alpha\beta)_{21} + (\alpha\beta)_{22} = 0, (\alpha\beta)_{11} + (\alpha\beta)_{21} = 0 \text{ et } (\alpha\beta)_{12} + (\alpha\beta)_{22} = 0$

$$\begin{array}{lll} Y_{11} & = & 1 \times \mu - 1 \times \alpha_2 - 1 \times \beta_2 + 1 \times (\alpha \beta)_{22} + \varepsilon_{11} \\ Y_{12} & = & 1 \times \mu - 1 \times \alpha_2 + 1 \times \beta_2 - 1 \times (\alpha \beta)_{22} + \varepsilon_{12} \\ Y_{21} & = & 1 \times \mu + 1 \times \alpha_2 - 1 \times \beta_2 - 1 \times (\alpha \beta)_{22} + \varepsilon_{21} \\ Y_{22} & = & 1 \times \mu + 1 \times \alpha_2 + 1 \times \beta_2 + 1 \times (\alpha \beta)_{22} + \varepsilon_{22} \end{array}$$

Matrice des effets pour un modèle avec interaction

Matrice des essais et matrice des effets associée

	Matrice des essais				
Essai	F_1 F_2				
1	Н	Н			
2	Н	В			
3	В	Н			
4	В	В			

Matrice des effets							
ı	F_1	F_2	$F_1 : F_2$				
+1	+1	+1	+1				
+1	+1	-1	-1				
+1	-1	+1	-1				
+1	-1	-1	+1				

Remarques

- ▶ Le codage binaire de l'effet d'interaction F₁: F₂ s'obtient à partir du produit terme à terme des vecteurs colonnes associés à F₁ et F₂
- La matrice des effets permet de déterminer les séquences d'essais possibles garantissant :
 - ► l'équilibre du plan (autant de +1 que de -1)
 - la non-confusion avec les effets principaux (produit nul avec les vecteurs associés aux effets principaux)

Plans fractionnaires

Dispositifs expérimentaux incomplets

 ${\color{blue} \textbf{Illustration}: On \ cherche \ \grave{a} \ optimiser \ l'appréciation \ sensorielle \ d'un \ biscuit, \ dont \ la \ recette \ dépend \ de: }$

- ▶ la quantité de lait dans la pâte $(x_1 \in \{B, H\})$
- la température de cuisson $(x_2 \in \{B, H\})$
- ▶ la quantité de sucre $(x_3 \in \{B, H\})$

Les mesures sont réparties entre deux équipes d'opératrices.teurs $(x_4 \in \{1,2\})$

Plan d'expériences (incomplet) : plan fractionnaire 2⁴⁻¹

Essai	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> ₃	<i>X</i> ₄
1	Н	Н	Н	?
2	Н	Н	В	?
3	Н	В	Н	?
4	Н	В	В	?
5	В	Н	Н	?
6	В	Н	В	?
7	В	В	Н	?
8	В	В	В	?

Comment répartir au mieux ces essais entre deux équipes ?

Construction d'un plan fractionnaire optimal

Illustration: plan 24-1

▶ Matrice des effets du plan complet 2³

$\overline{}$	F ₁	F ₂	F ₃	$F_1 F_2$	F ₁ F ₃	F ₂ F ₃	F ₁ F ₂ F ₃
+1	+1	+1	+1	+1	+1	+1	+1
+1	+1	+1	-1	+1	-1	-1	-1
+1	+1	-1	+1	-1	+1	-1	-1
+1	+1	-1	-1	-1	-1	+1	+1
+1	-1	+1	+1	-1	-1	+1	-1
+1	-1	+1	-1	-1	+1	-1	+1
+1	-1	-1	+1	+1	-1	-1	+1
_+1	-1	-1	-1	+1	+1	+1	-1

Liste d'essais pour le facteur supplémentaire F_4 : $F_4 = F_1 \ F_2 \ F_3$

_	Essai	<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	X4
_	1	Н	Н	Н	Equipe 2
	2	Н	Н	В	Equipe 1
	3	Н	В	Н	Equipe 1
	4	Н	В	В	Equipe 2
	5	В	Н	Н	Equipe 1
	6	В	Н	В	Equipe 2
	7	В	В	Н	Equipe 2
	8	В	В	В	Equipe 1
-					

Niveau global de confusion d'un plan d'expériences : résolution

Illustration: plan 24-1

- ▶ Générateur d'alias : $F_4 = F_1 F_2 F_3 \Rightarrow I = F_1 F_2 F_3 F_4$
- Le générateur d'alias est utile pour recenser les confusions :
 - Effet confondu avec $F_1 : F_1 = F_2 F_3 F_4$
 - Effet confondu avec F₁ F₃ : F₁ F₃ = F₂ F₄
- Mesure du niveau global de confusion : la résolution du plan est la longueur du plus petit générateur d'alias
 - ▶ la résolution du plan 2⁴⁻¹ est donc 4
 - les effets principaux sont confondus avec des interactions d'ordre 3
 - les effets d'interaction d'ordre 2 sont confondus entre eux : pour en estimer certains, d'autres doivent être supposés inexistants
- Résolutions dégradées :
 - Résolution 3 : les effets principaux sont confondus avec les effets d'interaction d'ordre 2
 - Résolution 2 : les effets principaux sont confondus entre eux

Plan 2⁴⁻¹ dans R

[1] "AB=CD" "AC=BD" "AD=BC"

Illustration : matrice des essais pour 4 facteurs avec n = 8

```
plan4 <- FrF2::FrF2(nruns=8,nfactors=4,factor.names=paste0("F",1:4),</pre>
             replications=1)
plan4
 F1 F2 F3 F4
1 1 -1 -1 1
2 -1 1 -1 1
3 -1 -1 -1 -1
4 -1 1 1 -1
5 1 1 1 1
6 1 1 -1 -1
7 -1 -1 1 1
8 1 -1 1 -1
class=design, type= FrF2
design.info(plan4)$catlg.entry
Design: 4-1.1
  8 runs, 4 factors,
  Resolution IV
  Generating columns: 7
  WLP (3plus): 0 1 0 0 0 , 0 clear 2fis
design.info(plan4)$aliased$fi2
```

Construction d'un plan fractionnaire avec plusieurs générateurs d'alias

Illustration: plan 2^{5-2}

▶ Matrice des effets du plan complet 2³

T	F ₁	F ₂	F ₃	F ₁ F ₂	F ₁ F ₃	F ₂ F ₃	F ₁ F ₂ F ₃
$\overline{+1}$	+1	+1	+1	+1	+1	+1	+1
+1	+1	+1	-1	+1	-1	-1	-1
+1	+1	-1	+1	-1	+1	-1	-1
+1	+1	-1	-1	-1	-1	+1	+1
+1	-1	+1	+1	-1	-1	+1	-1
+1	-1	+1	-1	-1	+1	-1	+1
+1	-1	-1	+1	+1	-1	-1	+1
_+1	-1	-1	-1	+1	+1	+1	-1

- ▶ Proposition de listes d'essais pour les facteurs supplémentaires F₄ et F₅ :
 - $F_4 = F_1 F_2 F_3$ $F_5 = F_1 F_2$
- Générateurs d'alias
 - ► I= F₁ F₂ F₃ F₄
 - $I=F_1F_2F_5$
 - ► I= F₃ F₄ F₅
- Résolution du plan : 3

Comment obtenir une meilleure résolution ?

Plan 2⁵⁻² dans R

Illustration : matrice des essais pour 5 facteurs avec n = 8

```
plan5 <- FrF2::FrF2(nruns=8,nfactors=5,factor.names=paste0("F",1:5))</pre>
plan5
 F1 F2 F3 F4 F5
1 -1 1 1 -1 -1
2 -1 1 -1 -1 1
3 1 1 -1 1 -1
4 -1 -1 1 1 -1
5 1 -1 -1 -1 -1
6 -1 -1 -1 1 1
7 1 -1 1 -1 1
class=design, type= FrF2
design.info(plan5)$catlg.entry
Design: 5-2.1
  8 runs, 5 factors,
  Resolution III
  Generating columns: 3 5
  WLP (3plus): 2 1 0 0 0 , 0 clear 2fis
design.info(plan5)$aliased$main
[1] "A=BD=CE" "B=AD"
                       "C=AE"
                                 "D=AB"
                                           "E=AC"
```

Ce qu'il faut retenir

La précision de l'estimation des effets et donc la puissance des tests des effets dépendent du choix des individus constituant l'échantillon

- ▶ Effets de variables explicatives quantitatives : favoriser la dispersion des valeurs dans l'échantillon
- Effets de variables explicatives catégorielles : favoriser une répartition equilibrée des combinaisons de modalités des variables, pour limiter les confusions d'effets
- ► Cas de p variables explicatives catégorielles à 2 modalités :
 - Le plan complet 2^p garantit la non-confusion complète mais est très coûteux si p est grand
 - Les plans fractionnaires 2^{p-k} offrent des garanties d'optimalité mais génèrent des confusions d'effets
 - Les stratégies de construction de plans fractionnaires visent donc à minimiser le niveau global de confusion et à permettre l'estimation des effets les plus importants au regard de la problématique

Perspectives

▶ Module de plan d'expériences en M1 : généralisation à des plans pour variables quantitatives et catégorielles à plus de deux modalités