Analyse statistique de l'information spatiale

David Causeur

Laboratoire de Mathématiques Appliquées Agrocampus Ouest IRMAR CNRS UMR 6625

http://www.agrocampus-ouest.fr/math/causeur/

Plan du cours

- 1 Introduction
 Problématiques
 Modélisation spatiale
- 2 Description statistique de la variabilité spatiale Données géostatistiques Lissage de données spatiales
- Modélisation géostatistique Modèles de dépendance spatiale Analyse variographique Prédiction
- 4 Modélisation multivariée
- 6 Perspectives

Domaine d'application historique

00000

Domaines d'application privilégiés

Domaines d'application plus récents

Domaine d'application historique

Prospection minière

Domaines d'application privilégiés

évaluation des ressources

Domaines d'application plus récents

Domaine d'application historique

Prospection minière

Domaines d'application privilégiés

Environnement

évaluation des ressources

cartographie d'un polluant

Domaines d'application plus récents

Domaine d'application historique

Prospection minière

Domaines d'application privilégiés

- Environnement
- Épidémiologie

00000

Domaines d'application plus récents

évaluation des ressources

cartographie d'un polluant

diffusion d'une épidémie

Domaine d'application historique

Prospection minière

Domaines d'application privilégiés

Environnement

Épidémiologie

évaluation des ressources

cartographie d'un polluant

diffusion d'une épidémie

Domaines d'application plus récents

Économie

répartition géographique de populations

Domaine d'application historique

Prospection minière

Domaines d'application privilégiés

Environnement

Épidémiologie

évaluation des ressources

cartographie d'un polluant

diffusion d'une épidémie

Domaines d'application plus récents

Économie

répartition géographique de populations

Agriculture

agriculture de précision

Domaine d'application historique

Prospection minière

Domaines d'application privilégiés

Environnement

Épidémiologie

évaluation des ressources

cartographie d'un polluant

diffusion d'une épidémie

Domaines d'application plus récents

Économie

00000

répartition géographique de populations

Agriculture

agriculture de précision

Marketing

déplacement d'un consommateur

Domaine d'application historique

Prospection minière

Domaines d'application privilégiés

Environnement

Épidémiologie

évaluation des ressources

cartographie d'un polluant

diffusion d'une épidémie

Domaines d'application plus récents

Économie

Agriculture

Marketing

Écologie

répartition géographique de populations

agriculture de précision

déplacement d'un consommateur

dynamique des populations

Typologie des problématiques

Variabilité spatiale

- Localisation
 - Modélisation des coordonnées
 - Problématiques : analyse de répartition spatiale, estimation de densité, ...



Typologie des problématiques

Variabilité spatiale

- Localisation
 - Modélisation des coordonnées
 - Problématiques : analyse de répartition spatiale, estimation de densité, ...
- Mesures localisées
 - Modélisation des variations dans l'espace
 - Problématiques : cartographie, prédiction, ...

Principes généraux de modélisation

Champ aléatoire Z

•0000

$$Z = \{Z(S), S \in S\}$$

Données spatiales

Site	LOCALISATION DU SITE			Caractéristiques			
S	X	Y		Z_1	Z_2		Z_k
<i>S</i> ₁	<i>X</i> ₁	<i>y</i> ₁		$Z_1(s_1)$	$Z_2(s_1)$		$Z_k(s_1)$
<i>s</i> ₂	<i>X</i> ₂	<i>y</i> ₂		$Z_1(s_2)$?		$Z_k(s_2)$
÷	÷	:		:	:		:
s _n	<i>X</i> ₁	<i>y</i> ₁		$Z_1(s_n)$	$Z_2(s_n)$?

Méthodologie

Typologie des méthodes :

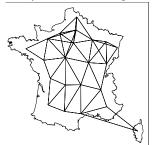
- Processus ponctuels
 - S ensemble aléatoire de coordonnées
 - Z(s) non-spécifié
 - Mots-clés : estimation de densité, répartition spatiale, ...

Méthodologie

Typologie des méthodes :

00000

- Processus ponctuels
 - S ensemble aléatoire de coordonnées
 - Z(s) non-spécifié
 - Mots-clés : estimation de densité, répartition spatiale, ...
- Statistique laticielle
 - S ensemble fixe de coordonnées sur une grille
 - Z(s) champ aléatoire au site $s \in S$
 - Mots-clés: modèles spatiaux auto-régressifs, ...



Méthodologie

Typologie des méthodes :

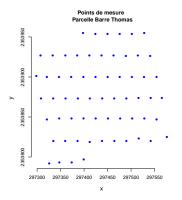
- Processus ponctuels
 - S ensemble aléatoire de coordonnées
 - Z(s) non-spécifié
 - Mots-clés : estimation de densité, répartition spatiale, ...
- Statistique laticielle
 - S ensemble fixe de coordonnées sur une grille
 - Z(s) champ aléatoire au site $s \in S$
 - Mots-clés: modèles spatiaux auto-régressifs, ...
- Géostatistique
 - S ensemble fixe de coordonnées géographiques
 - Z(s) champ aléatoire au site $s \in S$
 - Mots-clés : tendance spatiale, analyse variographique, krigeage, ...

Variabilité intra-parcellaire

Contexte : parcelle Barre Thomas

Surface : 150 m × 250 m

 Analyses pédologiques : pH, Carbone organique, Azote total, CEC, Argile

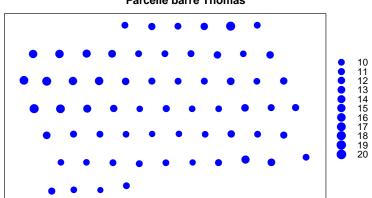


Questions

- Cartographie des indicateurs pédologiques
- Etude des liens entre indicateurs pédologiques
- Optimisation des ressources expérimentales

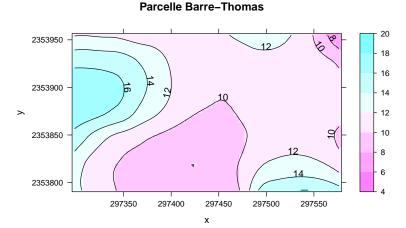
Visualisation de la variabilité intra-parcellaire

Teneur en Carbone Organique (g/kg) Parcelle barre Thomas



Visualisation de la variabilité intra-parcellaire

Teneur en Carbone Organique (g/kg)



Dépendance spatiale

Modèle de dépendance spatiale 1D

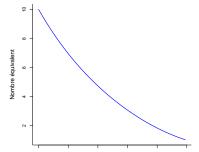
$$\mathbb{E}[Z(s)] = \mu, \quad \text{Cov}[Z(s_1), Z(s_2)] = \sigma^2 \rho^{|s_2 - s_1|}, \ 0 < \rho < 1$$

- Échantillonnage : {*Z*(1), *Z*(2), ..., *Z*(*n*)}
- Estimateur de μ : $\hat{\mu} = \bar{Z}$

$$Var(\hat{\mu}) = \frac{\sigma^2}{n} \left[1 + 2\alpha \frac{n-1}{n} - 2\alpha^2 \frac{1-\rho^{n-1}}{n} \right] = \frac{\sigma^2}{n'}$$

où
$$\alpha = \rho/(1-\rho)$$
.

0000



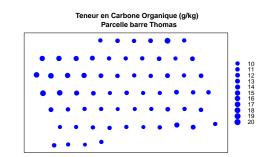
Plan du cours

- 1 Introduction
 Problématiques
 Modélisation spatiale
- 2 Description statistique de la variabilité spatiale Données géostatistiques Lissage de données spatiales
- Modélisation géostatistique Modèles de dépendance spatiale Analyse variographique Prédiction
- 4 Modélisation multivariée
- 6 Perspectives

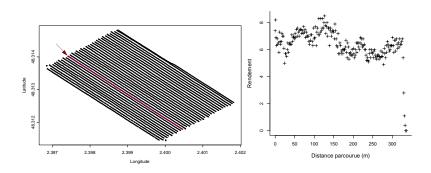
Données géostatistiques

- S ensemble des sites possibles de mesure,
- Z(s) la mesure au site s,
- $\{s_1, s_2, \dots, s_n\}$, $n \ge 1$, ensemble des sites de mesure,

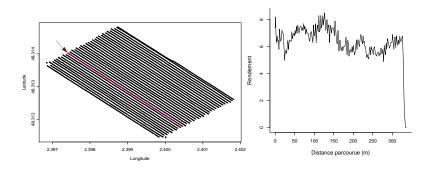
$$Z = \begin{pmatrix} Z(s_1) \\ Z(s_2) \\ \vdots \\ Z(s_n) \end{pmatrix}$$



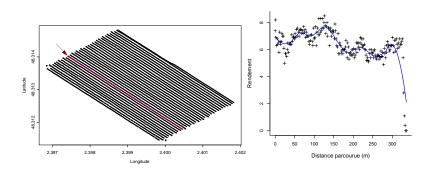
Modélisation géostatistique

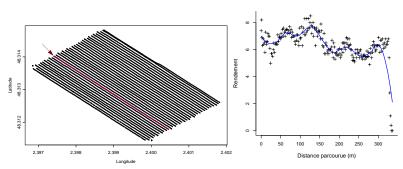


Modélisation géostatistique



Modélisation géostatistique





Modèle géostatistique

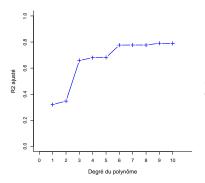
$$Z(s) = \mu(s) + \varepsilon(s)$$

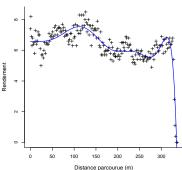
 $\mu(s)$: variations à grande échelle $\varepsilon(s)$: variations à faible échelle

Estimation de la tendance spatiale

Modèles paramétriques

$$\mu(x,y) = \beta_0 + \beta_1 x + \beta_2 y, \mu(x,y) = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 x y + \beta_4 x^2 + \dots,$$





Estimation de la tendance spatiale

Modèles paramétriques

$$\mu(x, y) = \beta_0 + \beta_1 x + \beta_2 y,$$

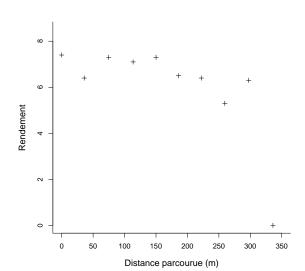
 $\mu(x, y) = \beta_0 + \beta_1 x + \beta_2 y + \beta_3 x y + \beta_4 x^2 + \dots,$

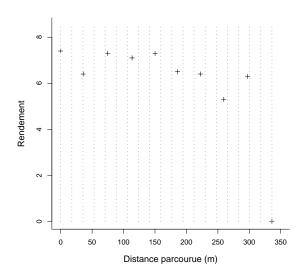
Modèles non-paramétriques

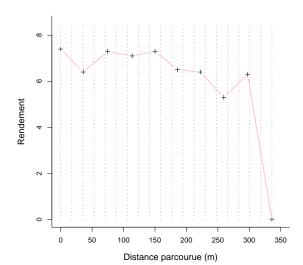
• Interpolation : so site sans mesure

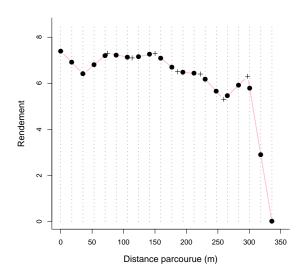
$$\hat{\mu}(s_0)$$
?

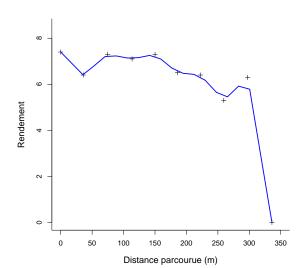
• Approximation locale de $\mu(s)$

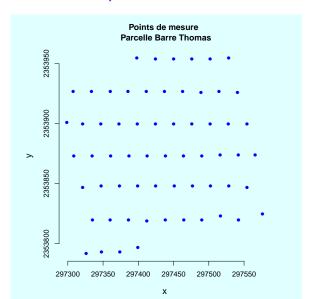


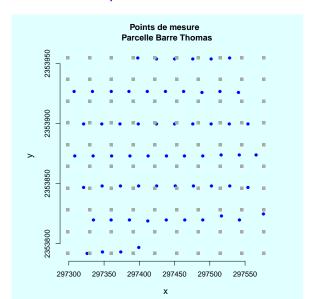


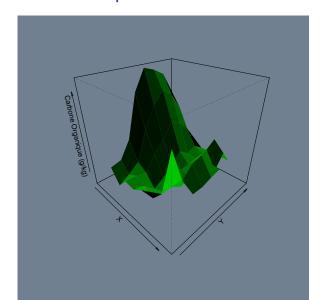


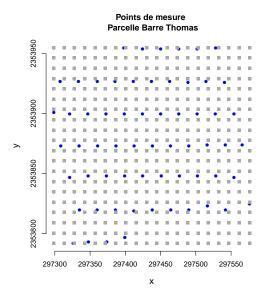


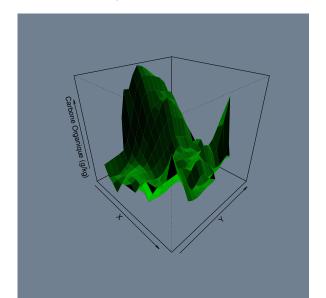




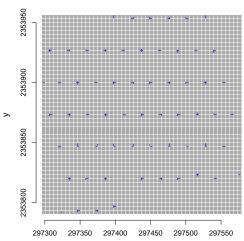




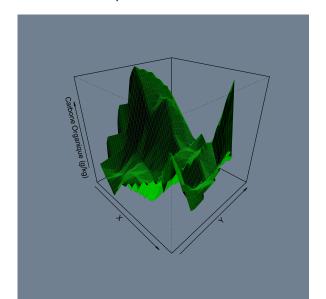


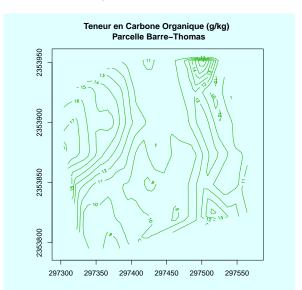


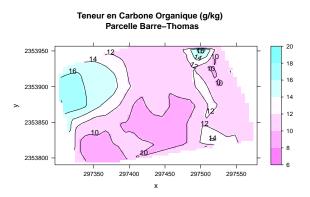
Points de mesure Parcelle Barre Thomas



х





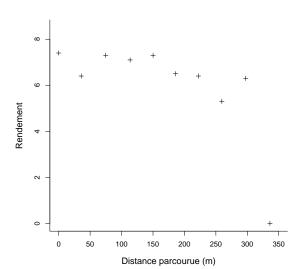


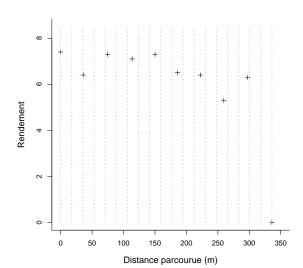
Estimation par moyenne pondérée mobile

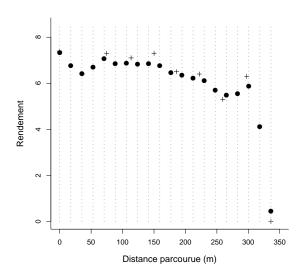
$$\hat{\mu}(s_0) = \frac{\sum_{i=1}^{n} p_i(s_0) Z(s_i)}{\sum_{i=1}^{n} p_i(s_0)},$$

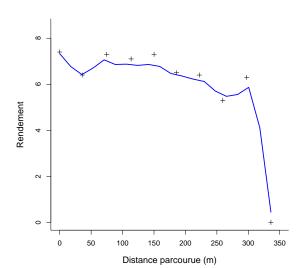
$$où p_i(s_0) = \frac{1}{d(s_0, s_i)},$$

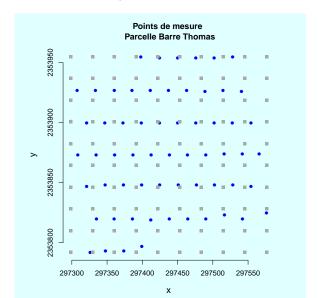
$$\hat{\mu}(s_i) = Z(s_i)$$

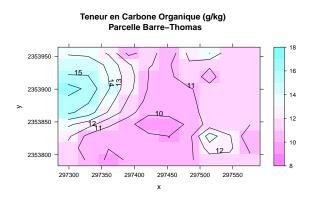




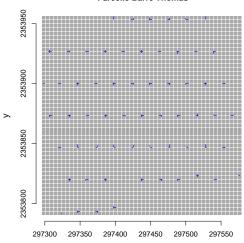




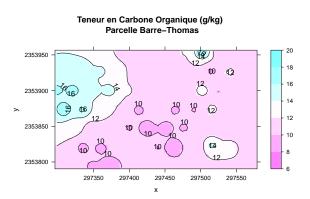




Points de mesure Parcelle Barre Thomas



х

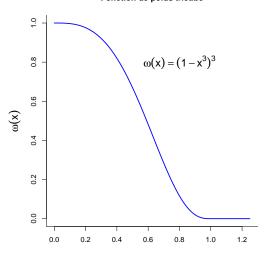


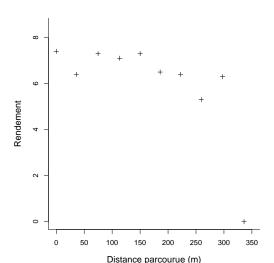
Estimation par régression pondérée mobile $\mathcal{V}_0(\alpha)$ ensemble des 100α % des s_i les plus proches de s_0 $\lambda_0(\alpha)$ distance maximale entre un site de $\mathcal{V}_0(\alpha)$ et s_0 $\hat{\mathcal{D}}_0(s)$ droite de régression autour de s_0

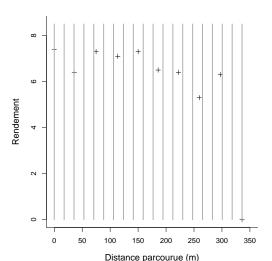
$$\sum_{i=1}^{n} p_i(s_0) \left[\hat{D}_0(s_i) - Z(s_i) \right]^2$$
 est aussi petit que possible

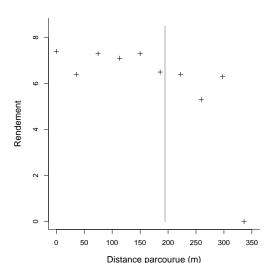
où
$$p_i(s_0) = \omega\left(\frac{d(s_0, s_i)}{\lambda_0(\alpha)}\right)$$

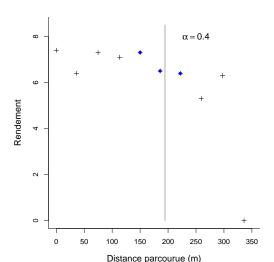
Fonction de poids tricube

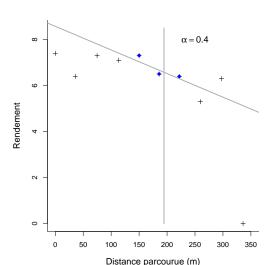


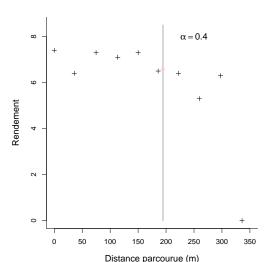


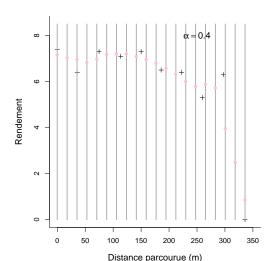


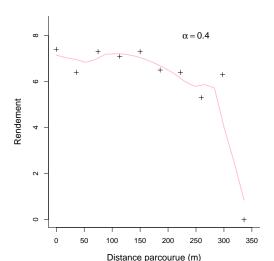


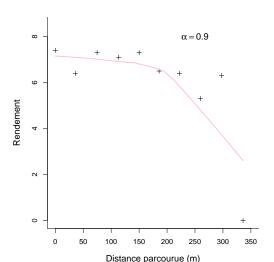


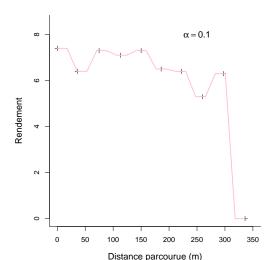


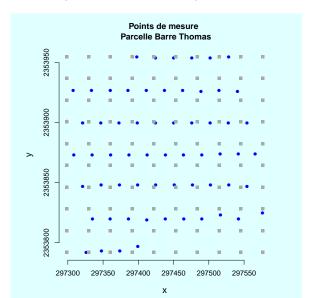


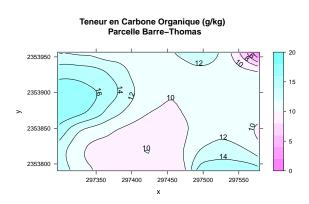




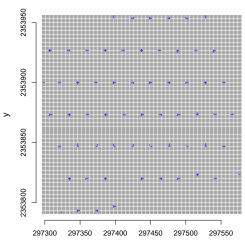




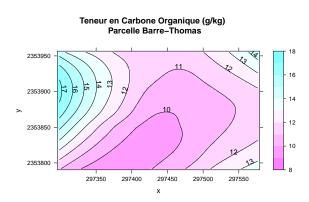




Points de mesure Parcelle Barre Thomas



х



Choix de α

Maximisation de la qualité d'ajustement

$$SCER(\alpha) = \sum_{i=1}^{n} [Z(s_i) - \hat{Z}(s_i)]^2$$

Choix de α

Maximisation de la qualité d'ajustement

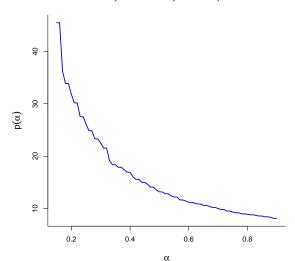
$$SCER(\alpha) = \sum_{i=1}^{n} [Z(s_i) - \hat{Z}(s_i)]^2$$

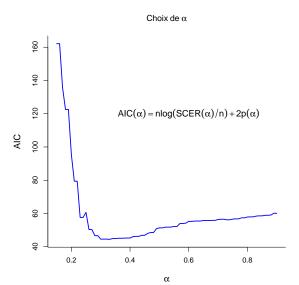
Compromis qualité d'ajustement/complexité du modèle

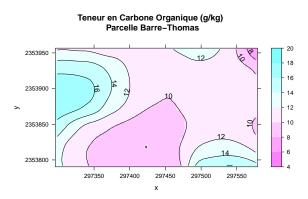
$$AIC(\alpha) = n\log\left[\frac{SCER(\alpha)}{n}\right] + 2p(\alpha)$$

où $p(\alpha)$ est le nombre équivalent de paramètres

Choix de alpha. Nombre équivalent de paramètres





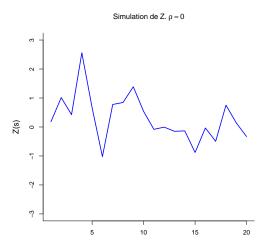


Plan du cours

- 1 Introduction
 Problématiques
 Modélisation spatiale
- 2 Description statistique de la variabilité spatiale Données géostatistiques Lissage de données spatiales
- Modélisation géostatistique Modèles de dépendance spatiale Analyse variographique Prédiction
- 4 Modélisation multivariée
- 6 Perspectives

$$\mathbb{E}[Z(s)] = \mu, \quad \text{Cov}[Z(s_1), Z(s_2)] = \sigma^2 \rho^{|s_2 - s_1|}, \ 0 < \rho < 1$$

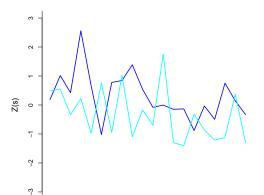
$$\mathbb{E}[Z(s)] = \mu, \quad \text{Cov}[Z(s_1), Z(s_2)] = \sigma^2 \rho^{|s_2 - s_1|}, \ 0 < \rho < 1$$



Simulation de Z. $\rho = 0$

Modèle de dépendance spatiale 1D

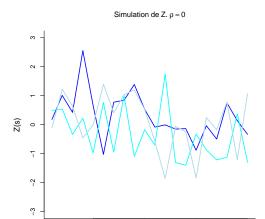
$$\mathbb{E}[Z(s)] = \mu, \quad \text{Cov}[Z(s_1), Z(s_2)] = \sigma^2 \rho^{|s_2 - s_1|}, \ 0 < \rho < 1$$



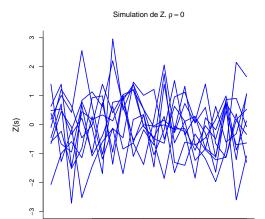
15

20

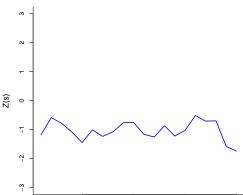
$$\mathbb{E}[Z(s)] = \mu, \quad \text{Cov}[Z(s_1), Z(s_2)] = \sigma^2 \rho^{|s_2 - s_1|}, \ 0 < \rho < 1$$



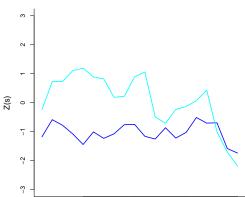
$$\mathbb{E}\left[Z(s) \right] = \mu, \quad \text{Cov}\left[Z(s_1), Z(s_2) \right] = \sigma^2 \rho^{|s_2 - s_1|}, \ 0 < \rho < 1$$



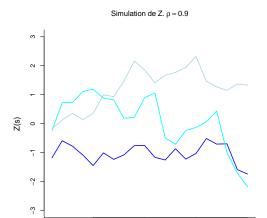
$$\mathbb{E}[Z(s)] = \mu, \quad \text{Cov}[Z(s_1), Z(s_2)] = \sigma^2 \rho^{|s_2 - s_1|}, \ 0 < \rho < 1$$



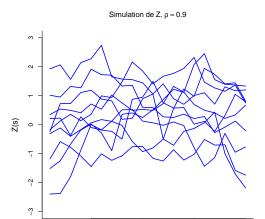
$$\mathbb{E}[Z(s)] = \mu, \quad \text{Cov}[Z(s_1), Z(s_2)] = \sigma^2 \rho^{|s_2 - s_1|}, \ 0 < \rho < 1$$



$$\mathbb{E}[Z(s)] = \mu, \quad \text{Cov}[Z(s_1), Z(s_2)] = \sigma^2 \rho^{|s_2 - s_1|}, \ 0 < \rho < 1$$



$$\mathbb{E}[Z(s)] = \mu, \quad \text{Cov}[Z(s_1), Z(s_2)] = \sigma^2 \rho^{|s_2 - s_1|}, \ 0 < \rho < 1$$



Modèle de dépendance spatiale 1D

$$\mathbb{E}[Z(s)] = \mu, \quad \text{Cov}[Z(s_1), Z(s_2)] = \sigma^2 \rho^{|s_2 - s_1|}, \ 0 < \rho < 1$$

Modèle des variations locales

Stationnarité stricte

$$\mathcal{L}\left[\varepsilon(s_1), \varepsilon(s_2), \dots, \varepsilon(s_n)\right] =$$

 $\mathcal{L}\left[\varepsilon(s_1+h), \varepsilon(s_2+h), \dots, \varepsilon(s_n+h)\right]$

Stationnarité à l'ordre 2

$$\forall (s, s'), \mathsf{Cov}\left[\varepsilon(s), \varepsilon(s')\right] = C(s - s')$$

où C est la fonction d'autocovariance de ε .

Auto-covariance d'un processus spatial

Propriétés

- Symétrie : C(h) = C(-h)
- Majoration : $|C(h)| \leq C(0)$
- Portée : a tel que $C(h) = 0, \forall h, ||h|| \ge a$

Analyse de C:

- Direction de h : structuration spatiale de la variabilité
- Norme de h : régularité des variations spatiales

Isotropie des variations locales

$$\forall (s, s'), \ \mathsf{Cov}\left[arepsilon(s), arepsilon(s')
ight] = C(||s - s'||)$$

Accroissements d'ordre h d'origine s

$$\Delta_h(s) = \varepsilon(s+h) - \varepsilon(s)$$

Variogramme $\gamma(h)$

$$Var \Big[\Delta_h(s) \Big] = 2 \Big[C(0) - C(h) \Big],$$

= $2\gamma(h)$

Propriétés

- Symétrie : $\gamma(h) = \gamma(-h)$
- Comportement en 0 : $\gamma(h) \geq 0$ et $\gamma(0) = 0$
- Majoration : $|\gamma(h)| \leq 2C(0)$
- Portée d'un site : a tel que $\gamma(h) = C(0), \forall h, ||h|| \ge a$

Variogramme et régularité d'un processus spatial

- Irrégularité : indépendance locale $[\gamma(h) = C(0)]$
- Régularité : dépendance locale maximale $[\gamma(h) = 0]$

Régularité:

- Non-covariance entre deux sites : γ constant
- Non-continuité de ε : effet de pépite

$$\lim_{h\to 0} E\left\{ \left[\varepsilon(s+h) - \varepsilon(s) \right]^2 \right\} \neq 0,$$

$$\lim_{h\to 0} \left\{ \gamma(h) \right\} \neq 0,$$

 γ n'est pas continue en 0

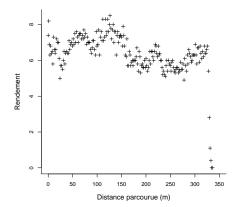
Non-dérivabilité de ε

$$\lim_{h\to 0} E\left\{ \left[\frac{\varepsilon(s+h)-\varepsilon(s)}{h} - \varepsilon'(s) \right]^2 \right\} \neq 0,$$

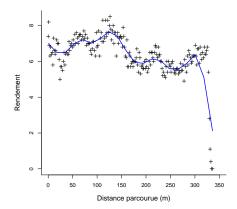
 γ n'est pas dérivable au second ordre en 0 et $\gamma'(0) \neq 0$

$$\hat{\gamma}(h) = \widehat{\operatorname{Var}}[\Delta_h(s)]$$

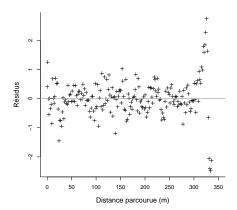
$$\hat{\gamma}(h) = \widehat{Var} [\Delta_h(s)]$$



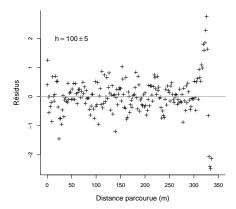
$$\hat{\gamma}(h) = \widehat{Var} [\Delta_h(s)]$$



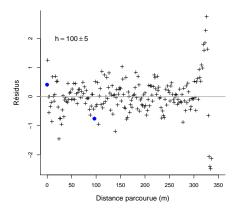
$$\hat{\gamma}(h) = \widehat{\text{Var}} [\Delta_h(s)]$$



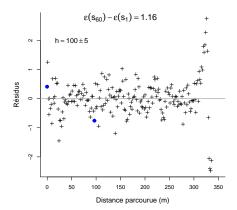
$$\hat{\gamma}(h) = \widehat{\text{Var}} [\Delta_h(s)]$$



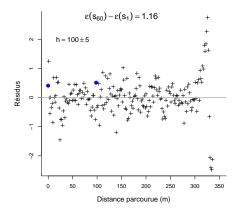
$$\hat{\gamma}(h) = \widehat{Var} [\Delta_h(s)]$$



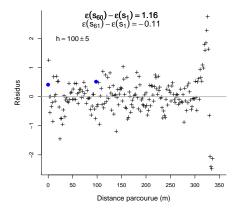
$$\hat{\gamma}(h) = \widehat{\text{Var}} \left[\Delta_h(s) \right]$$



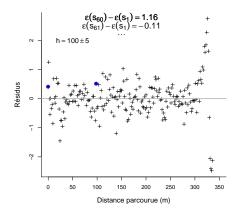
$$\hat{\gamma}(h) = \widehat{\text{Var}} [\Delta_h(s)]$$



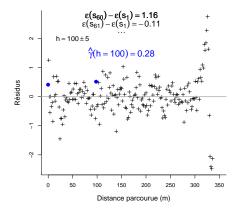
$$\hat{\gamma}(h) = \widehat{\text{Var}} [\Delta_h(s)]$$



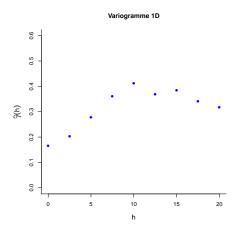
$$\hat{\gamma}(h) = \widehat{\text{Var}} [\Delta_h(s)]$$



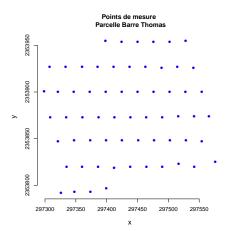
$$\hat{\gamma}(h) = \widehat{\text{Var}} [\Delta_h(s)]$$



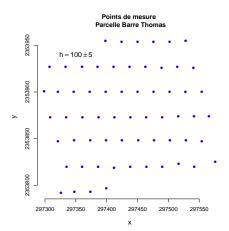
$$\hat{\gamma}(h) = \widehat{\text{Var}} [\Delta_h(s)]$$



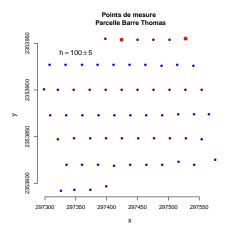
$$\hat{\gamma}(h) = \widehat{\operatorname{Var}} \Big[\Delta_h(s) \Big]$$



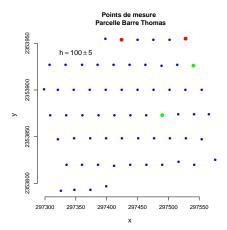
$$\hat{\gamma}(h) = \widehat{\text{Var}} [\Delta_h(s)]$$



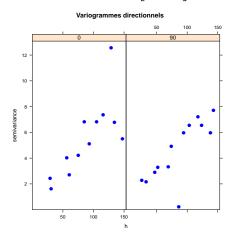
$$\hat{\gamma}(h) = \widehat{\operatorname{Var}} \Big[\Delta_h(s) \Big]$$



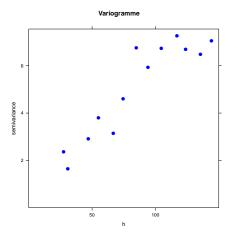
$$\hat{\gamma}(h) = \widehat{\operatorname{Var}} \Big[\Delta_h(s) \Big]$$



$$\hat{\gamma}(h) = \widehat{\text{Var}} [\Delta_h(s)]$$



$$\hat{\gamma}(h) = \widehat{\operatorname{Var}} [\Delta_h(s)]$$



Modèles non-stationnaires

- Variogramme linéaire : $\gamma(h) = \gamma_0 + \beta h$, $\gamma_0 > 0$, $\beta > 0$
- Variogramme puissance : $\gamma(h) = \gamma_0 + \beta h^a$, a > 0

Modèles non-stationnaires

- Variogramme linéaire : $\gamma(h) = \gamma_0 + \beta h$, $\gamma_0 > 0$, $\beta > 0$
- Variogramme puissance : $\gamma(h) = \gamma_0 + \beta h^a$, a > 0

Modèles stationnaires

• Variogramme gaussien :
$$\gamma(h) = \gamma_0 + \sigma^2 \left[1 - e^{-\left(\frac{h}{a}\right)^2}\right]$$

où
$$\sigma^2 > 0$$
, $\gamma_0 > 0$, $a > 0$.

Modèles non-stationnaires

- Variogramme linéaire : $\gamma(h) = \gamma_0 + \beta h$, $\gamma_0 > 0$, $\beta > 0$
- Variogramme puissance : $\gamma(h) = \gamma_0 + \beta h^a$, a > 0

Modèles stationnaires

- Variogramme gaussien : $\gamma(h) = \gamma_0 + \sigma^2 \left[1 e^{-\left(\frac{h}{a}\right)^2} \right]$
- Variogramme exponentiel : $\gamma(h) = \gamma_0 + \sigma^2 \left[1 e^{-\frac{h}{a}} \right]$

où
$$\sigma^2 > 0$$
, $\gamma_0 > 0$, $a > 0$.

Modèles non-stationnaires

- Variogramme linéaire : $\gamma(h) = \gamma_0 + \beta h$, $\gamma_0 > 0$, $\beta > 0$
- Variogramme puissance : $\gamma(h) = \gamma_0 + \beta h^a$, a > 0

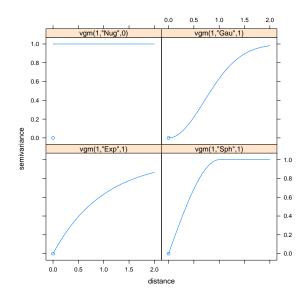
Modèles stationnaires

- Variogramme gaussien : $\gamma(h) = \gamma_0 + \sigma^2 \left| 1 e^{-\left(\frac{h}{a}\right)^2} \right|$
- Variogramme exponentiel : $\gamma(h) = \gamma_0 + \sigma^2 \left[1 e^{-\frac{h}{a}}\right]$
- Variogramme sphérique :

$$\gamma(h) = \gamma_0 + \sigma^2 \begin{cases} \frac{3}{2} \frac{||h||}{a} - \frac{1}{2} \frac{||h||}{a}^3 & \text{si} \quad ||h|| < a \\ 1 & \text{si} \quad ||h|| \ge a \end{cases}$$

où
$$\sigma^2 > 0$$
, $\gamma_0 > 0$, $a > 0$.

Modèles de variogramme



Paramètres d'un modèle de variogramme

- γ₀ est la pépite du processus,
- σ^2 est le paramètre de seuil :

$$\lim_{h\to+\infty} \left[\gamma(h) - \gamma_0 \right] = \sigma^2.$$

• a est le paramètre de portée

Ajustement d'un modèle de variogramme

Méthode des moindres carrés

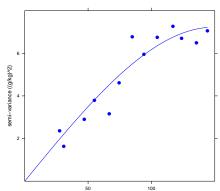
$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} \left[\hat{\gamma}(h_i) - \gamma(h_i; \theta) \right]^2$$

Ajustement d'un modèle de variogramme

Méthode des moindres carrés

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} [\hat{\gamma}(h_i) - \gamma(h_i; \theta)]^2$$

Ajustement d'un variogramme sphérique Nugget = 0, Psill = 7.22, Range = 149.24



Modèle spatial :
$$Z(s) = \mu(s) + \varepsilon(s)$$
, $Var(\varepsilon) = C$

- Krigeage ordinaire : $\mu(s) = \mu$
- Krigeage universel : $\mu(s)$ paramétrique linéaire

Modèle spatial :
$$Z(s) = \mu(s) + \varepsilon(s)$$
, $Var(\varepsilon) = C$

- Krigeage ordinaire : $\mu(s) = \mu$
- Krigeage universel : $\mu(s)$ paramétrique linéaire

Interpolation : $Z(s_0)$ prédite par $\hat{Z}(s_0)$

- $\hat{Z}(s_0)$ combinaison linéaire des $Z(s_i)$,
- $\mathbb{E}\left[Z(s_0)-\hat{Z}(s_0)\right]=0,$
- Var $\left[Z(s_0) \hat{Z}(s_0)\right]$ minimale.

Modèle spatial :
$$Z(s) = \mu(s) + \varepsilon(s)$$
, $Var(\varepsilon) = C$

- Krigeage ordinaire : $\mu(s) = \mu$
- Krigeage universel : $\mu(s)$ paramétrique linéaire

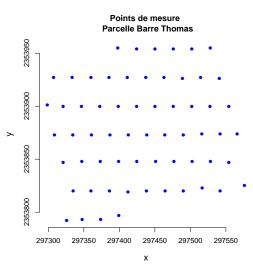
Interpolation : $Z(s_0)$ prédite par $\hat{Z}(s_0)$

- $\hat{Z}(s_0)$ combinaison linéaire des $Z(s_i)$,
- $\mathbb{E}\left|Z(s_0)-\hat{Z}(s_0)\right|=0$,
- Var $\left[Z(s_0) \hat{Z}(s_0)\right]$ minimale.

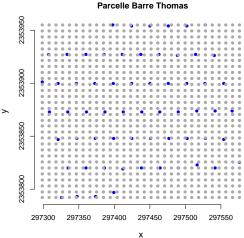
Prédicteur optimal:

$$\hat{Z}(s_0) = \hat{\mu}(s_0) + c(S, s_0)'C^{-1}[Z_n - \hat{\mu}(s)],$$

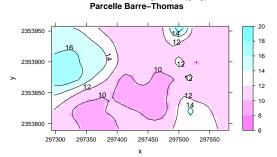
 $\hat{Z}(s_i) = Z(s_i)$ [Universalité]



Points de mesure



Teneur en Carbone Organique (g/kg)



Plan du cours

- 1 Introduction
 Problématiques
 Modélisation spatiale
- 2 Description statistique de la variabilité spatiale Données géostatistiques Lissage de données spatiales
- Modélisation géostatistique Modèles de dépendance spatiale Analyse variographique Prédiction
- 4 Modélisation multivariée
- 6 Perspectives

Modèle géostatistique multivarié

Données spatiales

Site	LOCALISATION DU SITE			Caractéristiques			
S	X	Y		Z_1	Z_2		Z_k
<i>S</i> ₁	<i>X</i> ₁	<i>y</i> ₁		$Z_1(s_1)$	$Z_2(s_1)$		$Z_k(s_1)$
<i>s</i> ₂	<i>X</i> ₂	<i>y</i> ₂		$Z_1(s_2)$?		$Z_k(s_2)$
:	:	÷		÷	:		÷
_s _n	<i>X</i> ₁	<i>y</i> ₁		$Z_1(s_n)$	$Z_2(s_n)$?

Modèle de dépendance multivariée : cross-variogrammes

$$\gamma_{jk}(h) = rac{1}{2}\operatorname{Cov}(\Delta_h^{(j)}(s), \Delta_h^{(k)}(s))$$
 ou $\gamma_{jk}(h) = rac{1}{2}\operatorname{Var}\Big[Z_k(s+h) - Z_j(s)\Big]$

Interpolation : $Z_i(s_0)$ prédite par $\hat{Z}_i(s_0)$

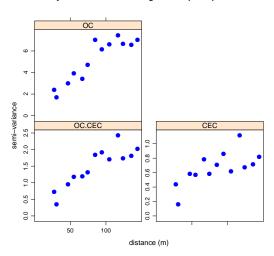
- $\hat{Z}_i(s_0)$ combinaison linéaire des $Z_k(s_i)$, k = 1, 2, ...,
- $\mathbb{E}\left|Z_j(s_0)-\hat{Z}_j(s_0)\right|=0,$
- Var $\left[Z(s_0) \hat{Z}(s_0)\right]$ minimale.

Interpolation : $Z_i(s_0)$ prédite par $\hat{Z}_i(s_0)$

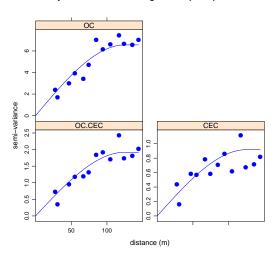
- $\hat{Z}_i(s_0)$ combinaison linéaire des $Z_k(s_i), k = 1, 2, ...,$
- $\mathbb{E}\left|Z_{j}(s_{0})-\hat{Z}_{j}(s_{0})\right|=0,$
- Var $\left[Z(s_0) \hat{Z}(s_0)\right]$ minimale.

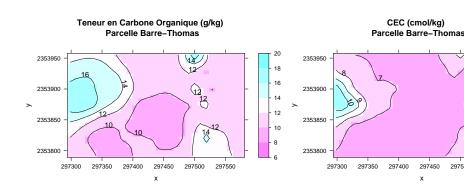
Choix de la variable associée : corrélation (Carbone Org, CEC) = 0.82

Ajustement d'un covariogramme sphérique



Ajustement d'un covariogramme sphérique





Plan du cours

- 1 Introduction
 Problématiques
 Modélisation spatiale
- 2 Description statistique de la variabilité spatiale Données géostatistiques Lissage de données spatiales
- Modélisation géostatistique Modèles de dépendance spatiale Analyse variographique Prédiction
- 4 Modélisation multivariée
- 6 Perspectives

Perspectives

- Ouverture à des domaines d'application non-traditionnels
- Modélisation multivariée pour cartographies cohérentes
- Optimisation des ressources expérimentales
 - Choix des variables corrélées
 - Choix des sites expérimentaux