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Regression modeling

Course objectives

Expertise in regression modeling for biological issues
• Nonlinear and nonparametric regression;
• Handling high-throughput profiles of explanatory variables;
• Model choice;
• Functional data analysis.
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Course objectives

Mathematical vs Applied statistics
• Statistical theory is reduced to its essentials
• Solving problems by data analysis using R
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Course objectives

By the end, students are expected to be able to:
• Implement methods for high-dimensional regression;
• Compare procedures based on statistical arguments;
• Assess the prediction performance of a learning algorithm;
• Apply these key insights using statistical software.
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Pre-requisites/assignments

• Regression
• Assumptions of linear regression modeling?
• Ordinary Least squares fitting?

• Model assessment
• R2?
• AIC?

• Testing
• t-test?
• F-test?

• Statistical software: R
• glm(y˜x,...)?
• anova(glm(...))?

Assignments: 1-hour written exam (all documents permitted)
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Outline

1 Regression modeling
Why ’regression’?
Fitting linear regression models

Regression with a real-valued response
Regression with a K -class response
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Understanding life mechanisms

F. Galton R. Fisher W. Gosset (Student)
1822-1911 1890-1962 1876-1937

Issue in life sciences: understanding phenotypical variations

In agricultural sciences: understanding yields variations
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Regression modeling

Wheat yield (Y ) modeling Wheat production profile (x)

• Variety
• Chemical inputs
• Soil composition
• ...

For a given profile x = (x1, . . . , xp)′ with phenotype Y

Ex (Y ) = f (x)

f : regression function
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Range of regression modeling

• Y can take various forms. Among them:
→ The reference framework. Y on a continuous scale.

Ex (Y ) is a ’mean’ Y value for the profile x
→ The ’classification’ framework. Y ∈ {y1, . . . , yK} is a K-class

variable.
Ex (Y ) is a K−vector of class probabilities Px (Y = yk ) for
the profile x

• f also
→ f known up to some unknown parameters

f (x ;β0, β1) = β0 + β1x , f (x ;β0, β1) = β0xβ1 , ...
→ f fully unknown

f (x) is ’regular’ (continuous, differentiable, ...)
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The model selection issue
General framework for the course:
• One response variable Y
• Many explanatory variables x = (x1, . . . , xp)

• Data: n independent joint observations (xi ,Yi), i = 1, . . .n

Central question: What is the best model to predict Y using
x , j = 1, . . . ,p?

Sub-question: How to compare the prediction ability of two models?

Subsub-question: How to fit a model?
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Illustration with a real-valued response

LMP: Lean Meat Percentage of a pig carcass

• LMP requires complete dissection
→ impossible on the slaughter-line
→ LMP is predicted by fat and muscle depths

• Different devices to measure tissue depths

Invasive probe Scanning device
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Prediction of the LMP

Linear regression model

Ex (Y ) = β0 + β1x1 + . . .+ βpxp,

ε = Y − Ex (Y ) ∼ N (0, σ),

where
• Y is the LMP of a pig
• x = (x1, . . . , xp)′ is the ’tissue depths’ profile of this pig
• β0 and β = (β1, . . . , βp)′ are the regression parameters
• σ is the residual standard deviation.

To fit the regression model = to estimate the βs
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Data needed to fit the model

Sample of independent units

Units Y x1 x2 . . . xp
1 Y1 x11 x12 . . . x1p
2 Y2 x21 x22 . . . x1p
...

...
...

...
...

n Yn xn1 xn2 . . . xnp

I Import pig data in the R session
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The reference fitting method: least-squares
Fitting principle: searching for the ’closest’ model from data

n∑
i=1

( εi=ith residual︷ ︸︸ ︷
Yi −

[
β0 + β1xi1 + . . .+ βpxip

])2
=

n∑
i=1

ε2
i

A very convenient closed-form solution ... provided S−1
x exists

β̂ = S−1
x sxy , β̂0 = Ȳ − β̂1x̄1 − . . .− β̂px̄p

where Sx is the sample p × p variance matrix of the x−profile
and sxy is the sample p−vector of covariances between Y and
the x−profile.

I Least-squares fitting in R
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Assessment of the fit

Closeness between observed Y and fitted values Ŷ :

Ŷ = β̂0 + β̂1x1 + . . .+ β̂pxp

using the residual sum-of-squares:

RSS =
n∑

i=1

(Yi − Ŷi)
2

I Residual sum-of-squares in R
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Assessment of the fit

Comparison with the null model:

M0 : Y = β0 + ε, with RSS0 =
n∑

i=1

(Yi − Ȳ )2

using the R2 coefficient:

R2 =
RSS0 − RSS

RSS0
,

= Cor2(Y , Ŷ ) [alternatively]

I R2 coefficient in R
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Assessment of the fit

Closeness between observed Y and fitted values Ŷ :

Ŷ = β̂0 + β̂1x1 + . . .+ β̂pxp

using the residual sum-of-squares:

RSS =
n∑

i=1

(Yi − Ŷi)
2

I Residual sum-of-squares in R
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Illustration with a K -class response

How to guess the place where coffee is produced from a
physico-chemical profile?

• Y , the production site, takes six possible values yk ;
• Five physico-chemical variables xj : concentrations in

• Chlorogenic acids (CGA),
• Cafeine,
• Trigonelline,
• Fat and
• dry matter
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Model for probabilities

Multinomial Logistic Linear Regression model

log
Px (Y = y2)

Px (Y = y1)
= β

(2)
0 + β

(2)
1 x1 + . . .+ β

(2)
p xp,

log
Px (Y = y3)

Px (Y = y1)
= β

(3)
0 + β

(3)
1 x1 + . . .+ β

(3)
p xp,

...
...

log
Px (Y = y6)

Px (Y = y1)
= β

(6)
0 + β

(6)
1 x1 + . . .+ β

(6)
p xp,

where β(k)0 and β(k) = (β
(k)
1 , . . . , β

(k)
p )′ are the regression

parameters
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Maximum-likelihood (ML) estimation

Fitting principle: searching for the ’closest’ model from data

’closest’: the ’deviance’ perspective

`x ,y (β) = Px1(Y = y1) . . .Pxn (Y = yn), [Likelihood]

Dx ,y (β) = −2log`x ,y (β), [Deviance]

Minimization of the deviance: No closed-form solution ... an
iterative fitting algorithm is needed.

I Model fitting in R
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Assessment of the fit
Closeness between estimated probabilities and observed
classes:
• Using the explained deviance:

D = Dx ,y (β̂0)−Dx ,y (β̂).

where Dx ,y (β̂0) is the residual deviance of the null model.
• Comparing fitted and observed classes:

Bayes rule: fitted class is the class with maximal estimated
probability.

I Model assessment in R
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