Latent variable models for prediction

Statistical learning for biological data

David Causeur

Department of Statistics and Computer Science Agrocampus Ouest IRMAR CNRS UMR 6625 http://www.agrocampus-ouest.fr/math/causeur/

Latent variable models for prediction

Outline

Regression modeling

Why 'regression'? Fitting linear regression models Feature selection for prediction

2 Penalized regression

Sparse regression modeling Penalized estimation of classification models

3 Latent variable models for prediction Partial Least Squares Linear Discriminant Analysis

Latent variable models for prediction

Outline

Regression modeling

Why 'regression'? Fitting linear regression models Feature selection for prediction

2 Penalized regression

Sparse regression modeling Penalized estimation of classification models

3 Latent variable models for prediction Partial Least Squares Linear Discriminant Analysis

Latent variable models for prediction

Outline

Regression modeling

Why 'regression'? Fitting linear regression models Feature selection for prediction

2 Penalized regression

Sparse regression modeling Penalized estimation of classification models

3 Latent variable models for prediction Partial Least Squares Linear Discriminant Analysis

Latent predicting variables

Let $x^* = (x_1^*, \dots, x_p^*)'$ denote the profile of scaled predictors

then the best univariate regression model

$$Y = \beta_0 + \beta_j x_j^* + \varepsilon_j$$
, where $\hat{\beta}_0 = \bar{Y}$ and $\hat{\beta}_j = s_{x_i^* y}$

has the largest $\mathsf{R}_j^2 = \hat{\beta}_j^2 / s_y^2$ or, equivalently, the largest $s_{x_j^*y}^2$.

Latent predicting variable: $t = \alpha_1 x_1^* + \ldots + \alpha_p x_p^*$ such that s_{ty}^2 is maximal among all possible linear combinations with $\alpha_1^2 + \ldots + \alpha_p^2 = 1$.

Extraction of the latent variable using R

Latent variable models for prediction •**0** 000000

Latent predicting variables

Y is related to t by a linear regression model:

$$Y = b_0 + bt + \varepsilon$$

Regression modeling using the latent variable in R

Latent predicting variables

Not all the explanatory information is concentrated in *t*:

• First 'deflate' the explanatory variables from *t*:

$$x_k = b_{0k} + b_{1k}t + e_k, e_k$$
: deflated x_k from t

Then extract a 2nd latent variable from the scaled e_k

$$t_2 = \alpha_1^{(2)} e_1^* + \ldots + \alpha_p^{(2)} e_p^*$$

where $s_{t_2y}^2$ is maximal among all possible linear combinations of e_k^* with $[\alpha_1^{(2)}]^2 + \ldots + [\alpha_p^{(2)}]^2 = 1$.

Extraction of a 2nd latent variable using R

Latent variable models for prediction

Latent predicting variables

Y is related to the LVs by a linear regression model:

Comparison of latent variable models using R

Latent variable models for prediction ○● ○○○○○○

Dimensionality of a regression model

Dimensionality: Optimal number k of LVs needed to predict Y

- If $k = \min(n, p)$, then OLS fit of the full regression model
- If $k < \min(n, p)$, then Partial-Least-Squares (PLS)
- k can be determined by CV

Choosing the number of PLS components using R

Dimensionality of a regression model

To sum up:

- PLS regression extracts latent explanatory variables;
- The number of LVs can be very limited w.r.t the number of variables;
- For the same number of LVs, PLS does better than Regression on Principal Components (PCR)

... PCR is also implemented in package PLS (function pcr)

Latent variable models for prediction

The LDA framework

$Y \in \{y_1, \ldots, y_K\}$ is a *K*-class variable

Y has prior probabilities $\pi_k = \mathbb{P}(Y = y_k)$

X is a *p*-vector of explanatory variables

$$\begin{aligned} X &= (X_1, \dots, X_p)' &\sim \mathcal{N}(\mu_k; \Sigma), \text{ given } Y = y_k; \\ &\sim \pi_1 \mathcal{N}(\mu_1; \Sigma) + \ldots + \pi_K \mathcal{N}(\mu_K; \Sigma); \end{aligned}$$

where

- μ_k is the mean vector in class k,
- Σ is the within-class variance-covariance matrix.

Prediction based on posterior class probabilities

Y has posterior probabilities:

$$\mathbb{P}(Y = y_k \mid X = x) = \pi_k \frac{f(x; \mu_k; \Sigma)}{\pi_1 f(x; \mu_1; \Sigma) + \ldots + \pi_K f(x; \mu_K; \Sigma)};$$

where $f(.; \mu, \Sigma)$ is the density function of the multivariate normal distribution with mean μ and variance Σ .

Prediction based on the Bayes rule:

$$\hat{Y} = y_{k^*}$$
 if $\mathbb{P}(Y = y_{k^*} \mid X = x) = \max_{k=1,\dots,K} \mathbb{P}(Y = y_k \mid X = x).$

Bayes prediction rule using R

Fisher's LDA score

Let us focus on the two-class prediction issue, with p = 1:

$$\log \frac{\mathbb{P}(Y = y_2 \mid X = x)}{\mathbb{P}(Y = y_1 \mid X = x)} = \log \left(\frac{\pi_2}{\pi_1}\right) + \frac{\mu_2 - \mu_1}{\sigma^2} \left(x - \frac{\mu_1 + \mu_2}{2}\right),$$
$$= L(x; \mu_1, \mu_2, \sigma), \quad \text{[Bayes linear classifier]}$$

Bayes prediction rule (two-class, p = 1):

$$\hat{Y} = y_2 \text{ if } \log\left(\frac{\pi_2}{\pi_1}\right) + \frac{\mu_2 - \mu_1}{\sigma^2} \left(x - \frac{\mu_1 + \mu_2}{2}\right) > 0.$$

Fisher's LDA score estimates Bayes Linear classifier:

$$\hat{L}(x) = L(x; \bar{x}_1, \bar{x}_2, s),$$

 $\propto \frac{\bar{x}_2 - \bar{x}_1}{s^2} \left(x - \frac{\bar{x}_1 + \bar{x}_2}{2}\right)$

Fisher's LDA score

Still with K = 2, but now p > 1, the same with matrix notations:

$$\hat{L}(x) \propto (\bar{x}_2 - \bar{x}_1)' W_x^{-1} \left(x - \frac{\bar{x}_1 + \bar{x}_2}{2} \right) = \hat{\beta}' \left(x - \frac{\bar{x}_1 + \bar{x}_2}{2} \right)$$

where W_x is the within-class variance-covariance matrix of x, $\hat{\beta} = W_x^{-1}(\bar{x}_2 - \bar{x}_1)'$.

Interestingly, $\hat{L}(x)$ is the linear score with largest ANOVA F-test statistic for the group mean comparison issue.

Therefore, now with K > 2 and p > 1: Fisher's LDA score is defined as the linear score with largest ANOVA F-test statistic for the group mean comparison issue.

Latent variable models for prediction

A geometrical viewpoint

Prediction based on the MAP class probability (K = 2):

$$\hat{Y} = y_2$$
 if $\hat{\mathbb{P}}(Y = y_2 \mid X = x) \ge \hat{\mathbb{P}}(Y = y_1 \mid X = x).$

Equivalently:

$$\hat{Y} = y_2 \text{ if } \Delta^2(L; \overline{L}_2) \geq \Delta^2(L; \overline{L}_1);$$

where

- \bar{L}_1 and \bar{L}_2 are the class means of the Fisher score \hat{L}
- $\Delta^2(L; \bar{L}) = (L \bar{L}_k)^2 2 \log p_k$
- *p*₁ and *p*₂ are prior class probabilities

Minimum distance prediction using R

Latent variable models for prediction

Multiclass LDA

1st LD score: $L_1(x) = \beta_1^{(1)} x_1 + \ldots + \beta_p^{(1)} x_p$ where the $\beta_j^{(1)}$ are such that the F-statistic for the class comparison is as large as possible.

2nd LD score: $L_2(x) = \beta_1^{(2)} x_1 + \ldots + \beta_p^{(2)} x_p$ where the $\beta_j^{(2)}$ are such that:

- The sample covariance of L₂ and L₁ is zero;
- the F-statistic of *L*₂ for the class comparison is as large as possible under the restrictions above.

..... and so on until the (K - 1)th LD score.

K-class LDA using R

LDA in high-dimension

In high-dimension, W_x^{-1} does not exist

If Z stands for the dummy coding of Y, then LDA can be reformulated as a least-squares minimization issue:

- A penalization can be added to obtain a sparse LDA fitting algorithm; see package sparseLDA
- Considering Z as a profile of quantitative responses leads to a PLS approach see package mixOmics for PLS-DA or even sPLS-DA