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Latent predicting variables

Let x∗ = (x∗1 , . . . , x
∗
p )′ denote the profile of scaled predictors

then the best univariate regression model

Y = β0 + βjx∗j + εj , where β̂0 = Ȳ and β̂j = sx∗
j y

has the largest R2
j = β̂2

j /s
2
y or, equivalently, the largest s2

x∗
j y .

Latent predicting variable: t = α1x∗1 + . . .+ αpx∗p such that s2
ty is

maximal among all possible linear combinations with
α2

1 + . . .+ α2
p = 1.

I Extraction of the latent variable using R
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Latent predicting variables

Y is related to t by a linear regression model:

Y = b0 + bt + ε

I Regression modeling using the latent variable in R
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Latent predicting variables

Not all the explanatory information is concentrated in t :

• First ’deflate’ the explanatory variables from t :

xk = b0k + b1k t + ek , ek : deflated xk from t

• Then extract a 2nd latent variable from the scaled ek

t2 = α
(2)
1 e∗1 + . . .+ α

(2)
p e∗p

where s2
t2y is maximal among all possible linear

combinations of e∗k with [α
(2)
1 ]2 + . . .+ [α

(2)
p ]2 = 1.

I Extraction of a 2nd latent variable using R
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Latent predicting variables

Y is related to the LVs by a linear regression model:

Y = b0 + b1t1 + b2t2 + ε

X9X8X7X6X5X4X3X2X1

T2T1T1

Y

X1 X2 X3 X4 X5 X6 X7 X8 X9

 

I Comparison of latent variable models using R
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Dimensionality of a regression model

Dimensionality: Optimal number k of LVs needed to predict Y
• If k = min(n,p), then OLS fit of the full regression model
• If k < min(n,p), then Partial-Least-Squares (PLS)
• k can be determined by CV

I Choosing the number of PLS components using R
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Dimensionality of a regression model

To sum up:
• PLS regression extracts latent explanatory variables;
• The number of LVs can be very limited w.r.t the number of

variables;
• For the same number of LVs, PLS does better than

Regression on Principal Components (PCR)

... PCR is also implemented in package PLS (function pcr)
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The LDA framework

Y ∈ {y1, . . . , yK} is a K -class variable

Y has prior probabilities πk = P(Y = yk )

X is a p-vector of explanatory variables

X = (X1, . . . ,Xp)′ ∼ N (µk ; Σ), given Y = yk ;

∼ π1N (µ1; Σ) + . . .+ πKN (µK ; Σ);

where
• µk is the mean vector in class k ,
• Σ is the within-class variance-covariance matrix.



Regression modeling Penalized regression Latent variable models for prediction

Prediction based on posterior class probabilities

Y has posterior probabilities:

P(Y = yk | X = x) = πk
f (x ;µk ; Σ)

π1f (x ;µ1; Σ) + . . .+ πK f (x ;µK ; Σ)
;

where f (.;µ,Σ) is the density function of the multivariate normal
distribution with mean µ and variance Σ.

Prediction based on the Bayes rule:

Ŷ = yk? if P(Y = yk? | X = x) = max
k=1,...,K

P(Y = yk | X = x).

I Bayes prediction rule using R
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Fisher’s LDA score

Let us focus on the two-class prediction issue, with p = 1:

log
P(Y = y2 | X = x)

P(Y = y1 | X = x)
= log

(π2

π1

)
+
µ2 − µ1

σ2

(
x − µ1 + µ2

2

)
,

= L(x ;µ1, µ2, σ), [Bayes linear classifier].

Bayes prediction rule (two-class, p = 1):

Ŷ = y2 if log
(π2

π1

)
+
µ2 − µ1

σ2

(
x − µ1 + µ2

2

)
> 0.

Fisher’s LDA score estimates Bayes Linear classifier:

L̂(x) = L(x ; x̄1, x̄2, s),

∝ x̄2 − x̄1

s2

(
x − x̄1 + x̄2

2

)
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Fisher’s LDA score

Still with K = 2, but now p > 1, the same with matrix notations:

L̂(x) ∝ (x̄2 − x̄1)′W−1
x

(
x − x̄1 + x̄2

2

)
= β̂′

(
x − x̄1 + x̄2

2

)
where Wx is the within-class variance-covariance matrix of x ,
β̂ = W−1

x (x̄2 − x̄1)′.

Interestingly, L̂(x) is the linear score with largest ANOVA F-test
statistic for the group mean comparison issue.

Therefore, now with K > 2 and p > 1: Fisher’s LDA score is
defined as the linear score with largest ANOVA F-test statistic
for the group mean comparison issue.

I Fisher’s LDA score using R
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A geometrical viewpoint
Prediction based on the MAP class probability (K = 2):

Ŷ = y2 if P̂(Y = y2 | X = x) ≥ P̂(Y = y1 | X = x).

Equivalently:

Ŷ = y2 if ∆2(L; L̄2) ≥ ∆2(L; L̄1);

where

• L̄1 and L̄2 are the class means of the Fisher score L̂
• ∆2(L; L̄) = (L− L̄k )2 − 2 log pk

• p1 and p2 are prior class probabilities

I Minimum distance prediction using R
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Multiclass LDA

1st LD score: L1(x) = β
(1)
1 x1 + . . .+ β

(1)
p xp where the β(1)j are

such that the F-statistic for the class comparison is as large as
possible.

2nd LD score: L2(x) = β
(2)
1 x1 + . . .+ β

(2)
p xp where the β(2)j are

such that:
• The sample covariance of L2 and L1 is zero;
• the F-statistic of L2 for the class comparison is as large as

possible under the restrictions above.

. . . ... and so on until the (K − 1)th LD score.

I K-class LDA using R
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LDA in high-dimension

In high-dimension, W−1
x does not exist

If Z stands for the dummy coding of Y , then LDA can be
reformulated as a least-squares minimization issue:

• A penalization can be added to obtain a sparse LDA fitting
algorithm;
see package sparseLDA

• Considering Z as a profile of quantitative responses leads
to a PLS approach
see package mixOmics for PLS-DA or even sPLS-DA


	Regression modeling
	Why 'regression'?
	Fitting linear regression models
	Feature selection for prediction

	Penalized regression
	Sparse regression modeling
	Penalized estimation of classification models

	Latent variable models for prediction
	Partial Least Squares
	Linear Discriminant Analysis


