Statistical learning for biological data

David Causeur

Department of Statistics and Computer Science Agrocampus Ouest IRMAR CNRS UMR 6625 http://www.agrocampus-ouest.fr/math/causeur/

Outline

Regression modeling

Why 'regression'? Fitting linear regression models Feature selection for prediction

2 Penalized regression Sparse regression modeling Penalized estimation of classification models

3 Latent variable models for prediction Partial Least Squares Linear Discriminant Analysis

4 Nonparametric regression Smooth effect curve Generalized Additive Modeling

Outline

Regression modeling

Why 'regression'? Fitting linear regression models Feature selection for prediction

2 Penalized regression

Sparse regression modeling Penalized estimation of classification models

3 Latent variable models for prediction Partial Least Squares Linear Discriminant Analysis

4 Nonparametric regression Smooth effect curve Generalized Additive Modeling

Outline

Regression modeling

Why 'regression'? Fitting linear regression models Feature selection for prediction

2 Penalized regression

Sparse regression modeling Penalized estimation of classification models

3 Latent variable models for prediction Partial Least Squares Linear Discriminant Analysis

4 Nonparametric regression Smooth effect curve Generalized Additive Modeling

Outline

Regression modeling

Why 'regression'? Fitting linear regression models Feature selection for prediction

2 Penalized regression

Sparse regression modeling Penalized estimation of classification models

3 Latent variable models for prediction Partial Least Squares Linear Discriminant Analysis

A Nonparametric regression Smooth effect curve Generalized Additive Modeling

Nonlinear regression function

In some situations, the regression function $x \mapsto f(x)$ is obviously nonlinear

... but no biological theory can help in setting a parametric framework:

$$Y = f(x) + \varepsilon, \ \varepsilon \sim \mathcal{N}(\mathbf{0}; \sigma)$$

Still, *f* is usually assumed to be *regular*: continuous, differentiable, twice differentiable, ...

Predicting the daily maximum ozone concentration using R

Nonlinear regression function

How to draw a regression curve without introducing any biological knowledge?

Local polynomial approximation: the loess method

Let x_0 be any value of X in $[\min(x_i); \max(x_i)]$:

$$f(x_0) = \mathbb{E}(Y \mid X = x_0)$$

How to estimate $f(x_0)$?

In the *rare* situations where replications of response values are observed for items with $X = x_0$

a natural estimate of $f(x_0)$ is just the average of those response values.

Most often, we do not even have any observation at $X = x_0$.

Local polynomial approximation: the loess method

More generally, change " $X = x_0$ " into "X close to x_0 "

Let $d_i = |x_0 - x_i|$ with $d_{(1)} \le d_{(2)} \le \ldots \le d_{(n)}$

For $1 \le k \le n$, the *k*-neighborhood of x_0 is defined as follows:

$$N_k(x_0) = \{i = 1, \dots, n, d_i \leq d_{(k)}\}$$

Illustration using R

Local polynomial approximation: the loess method

How to aggregate the response values of items within $N_k(x_0)$ to form an estimate of $f(x_0)$?

The *loess* answer: using a *weighted* local polynomial fit of the regression function.

Local polynomial approximation: the loess method

Why weighting the sampling items within $N_k(x_0)$?

... in order to estimate $f(x_0)$, the closest data points should be favored.

A possible weighting function:

$$\omega(x_i) = (1 - u_i^3)^3$$
, where $u_i = \frac{d_i}{\max_{i \in N_k(x_0)} d_i}$.

Displaying the tricube function in R

Local polynomial approximation: the loess method

Local weighted least-squares fit of a polynomial

$$\hat{D}(x) = \hat{a} + \hat{b}x + \hat{c}x^2, \text{ where} \\ (\hat{a}, \hat{b}, \hat{c}) \text{ minimizes } \sum_{i \in N_k(x_0)} \omega(x_i) [Y_i - a - bx_i - cx_i^2]^2.$$

Finally, $\hat{f}(x_0) = \hat{D}(x_0)$.

Local polynomial approximation using package gam in R

Local polynomial approximation: the loess method

What is the best value for k (or span)?

In a prediction accuracy perspective, *k* can be chosen so as to minimize the PRESS

Optimal span using R

Spline smoothing

Let us assume that *f* is a spline function of degree *d* on [*a*, *b*]

There exists a partition $a = t_0 < t_1 < t_2 < ... < t_L < b = t_{L+1}$ of [a, b] such that:

- f is a piecewise polynomial of degree d on the partition;
- f is d 1 times continuously differentiable on [a, b].

... Spline($t_1, t_2, ..., t_L; d$) is a (L + D + 1)-dimensional linear space

Note: *L* is the number of interior nodes.

Note also: usually, D = 3 (*cubic splines*)

Spline smoothing

For D = 0, L + 1 basis functions $B_{i,0}$, $i = 0, \ldots, L$:

$$egin{array}{rcl} B_{i,0}(x) &=& egin{cases} 1 & ext{if} & x \in [t_i, t_{i+1}[& 0 & ext{otherwise} & \end{array} \end{array}$$

For D = 1, L + 2 basis functions $B_{i,1}$, i = -1, 0, ..., L with support $[t_i, t_{i+2}]$:

$$B_{i,1}(x) = \frac{x-t_i}{t_{i+1}-t_i}B_{i,0}(x) + \frac{t_{i+2}-x}{t_{i+2}-t_{i+1}}B_{i+1,0}(x),$$

where, for all x, $B_{-1,0}(x) = 0$ and $B_{L+1,0}(x) = 0$.

For *D* = 2, . . .

Display B-splines using R

Spline smoothing

Since Spline($t_1, t_2, ..., t_L; d$) is a linear space:

$$Y = b_{-3}B_{-3}(x) + b_{-2}B_{-2}(x) + \ldots + b_{L}B_{L}(x) + \varepsilon$$

Estimation of $b = (b_{-3}, ..., b_L)$ is just a linear least-squares minimization issue.

Estimation of B-spline coefficients using R

Spline smoothing

loess and spline are both linear smoothers:

 $\hat{Y} = S_{\lambda}Y,$

where λ is a generic hyper-parameter for tuning regularity:

- the number of classes in the partition for *loess*
- the dimension of the B-spline basis for spline

e.g for spline smoothing: if B_λ stands for the matrix of B-spline functions, then

$$S_{\lambda} = B_{\lambda} (B'_{\lambda} B_{\lambda})^{-1} B_{\lambda}$$

What distinguishes the smoothing matrices of a smooth fit and a non-smooth fit?

Spline smoothing

Two extreme smoothing matrices:

• The averaging matrix (the smoothest possible):

$$\hat{Y}_i = \bar{Y}$$
, for all $i = 1, ..., n$,
where all elements in S_λ equal $\frac{1}{n}$

• The identity matrix (the least smooth):

$$\hat{Y}_i = Y_i$$
, for all $i = 1, \dots, n$, where $S_\lambda = I_n$

Nonparametric degree of freedom: $df_{\lambda} = trace(S_{\lambda})$ is interpreted as an *equivalent number of parameters*.

Nonparametric degree of freedom using R

Spline smoothing

Is the effect of temperature on Ozone concentration significantly nonlinear?

Nonparametric vs parametric model

Suppose M_0 is a parametric submodel of the regression model M: $Y = f(x) + \varepsilon$.

Let \textit{d}_0 and d denote the residual degrees of freedom of \mathcal{M}_0 and \mathcal{M} respectively.

Then, for the test of H_0 : \mathcal{M} is not better than \mathcal{M}_0 , the test statistics is the nonlinear F-test:

$$F = \frac{\frac{\text{RSS}_0 - \text{RSS}}{d_0 - d}}{\frac{\text{RSS}}{d}}$$

and the null distribution of *F* is the Fisher distribution with $d_0 - d$ and *d* degrees of freedom.

Nonparametric vs parametric model

Is there a gain in prediction accuracy of the present model w.r.t the linear model?

Prediction performance of a nonparametric model using R

Nonparametric vs parametric model

How to improve the prediction accuracy by completing the profile of explanatory variables?

Additive regression models

Suppose $x = (x_1, ..., x_p)$ is a profile of explanatory variables:

$$Y = \beta_0 + f_1(x_1) + \ldots + f_p(x_p) + \varepsilon, \ \varepsilon \sim \mathcal{N}(0; \sigma)$$

Estimation using a *Backfitting* algorithm :

• Initialization:
$$\hat{\beta}_0 = \bar{Y}, \ \hat{f}_j = \hat{f}_j^{(0)}$$

Cycling over the marginal effects: if *f*_j, *j* ≠ *k*, are the current estimates, update *f*_k:

$$\left[Y - \hat{\beta}_0 - \sum_{j=1, j \neq k}^{p} \hat{f}_j(x_j)\right] = f_k(x^{(k)}) + \varepsilon,$$

• Iteration until convergence.

Fitting full GAM using R

Additive regression models

Is it relevant to consider all the explanatory variables in the model?

Nonparametric model selection

The Akaike Information Criterion for the following additive model

$$Y = \beta_0 + f_1(x_1) + \ldots + f_p(x_p) + \varepsilon, \ \varepsilon \sim \mathcal{N}(0; \sigma)$$

with k nonparametric degrees of freedom is:

AIC
$$\propto n \log\left(\frac{\text{RSS}}{n}\right) + 2k$$

Stepwise model selection for gam is implemented in R package gam: step.Gam.

Stepwise nonparametric model selection using R